L(s) = 1 | + 2·5-s − 5·7-s + 4·11-s − 3·13-s + 7·17-s − 5·19-s + 4·23-s + 5·25-s − 29-s − 6·31-s − 10·35-s − 11·37-s − 9·41-s − 5·43-s − 6·47-s + 18·49-s + 3·53-s + 8·55-s + 14·59-s + 6·61-s − 6·65-s + 26·67-s + 16·71-s − 7·73-s − 20·77-s − 18·79-s + 83-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 1.88·7-s + 1.20·11-s − 0.832·13-s + 1.69·17-s − 1.14·19-s + 0.834·23-s + 25-s − 0.185·29-s − 1.07·31-s − 1.69·35-s − 1.80·37-s − 1.40·41-s − 0.762·43-s − 0.875·47-s + 18/7·49-s + 0.412·53-s + 1.07·55-s + 1.82·59-s + 0.768·61-s − 0.744·65-s + 3.17·67-s + 1.89·71-s − 0.819·73-s − 2.27·77-s − 2.02·79-s + 0.109·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 571536 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 571536 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.670838374\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.670838374\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.31313144760867943305963275787, −9.928632641684825750663932613682, −9.871751115675098161112653304834, −9.418319934230174856377597976382, −8.879464896301950656724252178718, −8.643162652326933815121367626502, −8.103468648819423980249647960001, −7.23101791822365787235798964611, −6.87302740285976810536360452389, −6.73584013999702334254314109400, −6.32589036732423119887338415682, −5.47343146164123109187481022185, −5.47038022724303532255153842673, −4.83102811244788963470027481560, −3.81509550361383763978718273989, −3.57689741879840005906462568462, −3.14894096657691983778769241616, −2.32836138723172585613220795480, −1.72881084394999007448461093778, −0.66143563828744786385086072334,
0.66143563828744786385086072334, 1.72881084394999007448461093778, 2.32836138723172585613220795480, 3.14894096657691983778769241616, 3.57689741879840005906462568462, 3.81509550361383763978718273989, 4.83102811244788963470027481560, 5.47038022724303532255153842673, 5.47343146164123109187481022185, 6.32589036732423119887338415682, 6.73584013999702334254314109400, 6.87302740285976810536360452389, 7.23101791822365787235798964611, 8.103468648819423980249647960001, 8.643162652326933815121367626502, 8.879464896301950656724252178718, 9.418319934230174856377597976382, 9.871751115675098161112653304834, 9.928632641684825750663932613682, 10.31313144760867943305963275787