Properties

Label 2-755-1.1-c1-0-43
Degree $2$
Conductor $755$
Sign $1$
Analytic cond. $6.02870$
Root an. cond. $2.45534$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3·3-s + 2·4-s + 5-s + 6·6-s − 7-s + 6·9-s + 2·10-s − 3·11-s + 6·12-s − 3·13-s − 2·14-s + 3·15-s − 4·16-s − 2·17-s + 12·18-s + 5·19-s + 2·20-s − 3·21-s − 6·22-s + 25-s − 6·26-s + 9·27-s − 2·28-s − 10·29-s + 6·30-s + 8·31-s + ⋯
L(s)  = 1  + 1.41·2-s + 1.73·3-s + 4-s + 0.447·5-s + 2.44·6-s − 0.377·7-s + 2·9-s + 0.632·10-s − 0.904·11-s + 1.73·12-s − 0.832·13-s − 0.534·14-s + 0.774·15-s − 16-s − 0.485·17-s + 2.82·18-s + 1.14·19-s + 0.447·20-s − 0.654·21-s − 1.27·22-s + 1/5·25-s − 1.17·26-s + 1.73·27-s − 0.377·28-s − 1.85·29-s + 1.09·30-s + 1.43·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 755 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 755 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(755\)    =    \(5 \cdot 151\)
Sign: $1$
Analytic conductor: \(6.02870\)
Root analytic conductor: \(2.45534\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 755,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.057452055\)
\(L(\frac12)\) \(\approx\) \(5.057452055\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad5 \( 1 - T \)
151 \( 1 + T \)
good2 \( 1 - p T + p T^{2} \) 1.2.ac
3 \( 1 - p T + p T^{2} \) 1.3.ad
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 3 T + p T^{2} \) 1.13.d
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + T + p T^{2} \) 1.59.b
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - T + p T^{2} \) 1.67.ab
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 15 T + p T^{2} \) 1.83.p
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 4 T + p T^{2} \) 1.97.e
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.05935844887219806968040847569, −9.534769328899119668554728495571, −8.653614521134927480003230121413, −7.63085834570756182140373082846, −6.89828150516592461693418399293, −5.64142856451330350450814329797, −4.74701739835461920500894106990, −3.70239921064209138881299938650, −2.86209258513198245202728340584, −2.20554629541618540322538604956, 2.20554629541618540322538604956, 2.86209258513198245202728340584, 3.70239921064209138881299938650, 4.74701739835461920500894106990, 5.64142856451330350450814329797, 6.89828150516592461693418399293, 7.63085834570756182140373082846, 8.653614521134927480003230121413, 9.534769328899119668554728495571, 10.05935844887219806968040847569

Graph of the $Z$-function along the critical line