Properties

Label 2-755-1.1-c1-0-36
Degree $2$
Conductor $755$
Sign $1$
Analytic cond. $6.02870$
Root an. cond. $2.45534$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3-s + 2·4-s + 5-s + 2·6-s + 3·7-s − 2·9-s + 2·10-s + 2·12-s + 6·13-s + 6·14-s + 15-s − 4·16-s − 4·17-s − 4·18-s − 19-s + 2·20-s + 3·21-s − 3·23-s + 25-s + 12·26-s − 5·27-s + 6·28-s − 3·29-s + 2·30-s + 7·31-s − 8·32-s + ⋯
L(s)  = 1  + 1.41·2-s + 0.577·3-s + 4-s + 0.447·5-s + 0.816·6-s + 1.13·7-s − 2/3·9-s + 0.632·10-s + 0.577·12-s + 1.66·13-s + 1.60·14-s + 0.258·15-s − 16-s − 0.970·17-s − 0.942·18-s − 0.229·19-s + 0.447·20-s + 0.654·21-s − 0.625·23-s + 1/5·25-s + 2.35·26-s − 0.962·27-s + 1.13·28-s − 0.557·29-s + 0.365·30-s + 1.25·31-s − 1.41·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 755 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 755 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(755\)    =    \(5 \cdot 151\)
Sign: $1$
Analytic conductor: \(6.02870\)
Root analytic conductor: \(2.45534\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 755,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.129042573\)
\(L(\frac12)\) \(\approx\) \(4.129042573\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad5 \( 1 - T \)
151 \( 1 + T \)
good2 \( 1 - p T + p T^{2} \) 1.2.ac
3 \( 1 - T + p T^{2} \) 1.3.ab
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.79804710749239572112210800926, −9.255688914203212049107356050900, −8.615447624830345390354725416478, −7.82556193345396651220452366345, −6.34482587049913083822378109346, −5.87830109403687891950778211108, −4.78076315187482584125392594040, −3.98936712639549159890754077028, −2.91156616338194989784912694440, −1.83522504840789766101819691778, 1.83522504840789766101819691778, 2.91156616338194989784912694440, 3.98936712639549159890754077028, 4.78076315187482584125392594040, 5.87830109403687891950778211108, 6.34482587049913083822378109346, 7.82556193345396651220452366345, 8.615447624830345390354725416478, 9.255688914203212049107356050900, 10.79804710749239572112210800926

Graph of the $Z$-function along the critical line