Properties

Label 755.2.a.e.1.1
Level $755$
Weight $2$
Character 755.1
Self dual yes
Analytic conductor $6.029$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [755,2,Mod(1,755)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(755, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("755.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 755 = 5 \cdot 151 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 755.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,2,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.02870535261\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 755.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +1.00000 q^{3} +2.00000 q^{4} +1.00000 q^{5} +2.00000 q^{6} +3.00000 q^{7} -2.00000 q^{9} +2.00000 q^{10} +2.00000 q^{12} +6.00000 q^{13} +6.00000 q^{14} +1.00000 q^{15} -4.00000 q^{16} -4.00000 q^{17} -4.00000 q^{18} -1.00000 q^{19} +2.00000 q^{20} +3.00000 q^{21} -3.00000 q^{23} +1.00000 q^{25} +12.0000 q^{26} -5.00000 q^{27} +6.00000 q^{28} -3.00000 q^{29} +2.00000 q^{30} +7.00000 q^{31} -8.00000 q^{32} -8.00000 q^{34} +3.00000 q^{35} -4.00000 q^{36} -2.00000 q^{37} -2.00000 q^{38} +6.00000 q^{39} +8.00000 q^{41} +6.00000 q^{42} +8.00000 q^{43} -2.00000 q^{45} -6.00000 q^{46} -8.00000 q^{47} -4.00000 q^{48} +2.00000 q^{49} +2.00000 q^{50} -4.00000 q^{51} +12.0000 q^{52} -10.0000 q^{53} -10.0000 q^{54} -1.00000 q^{57} -6.00000 q^{58} -4.00000 q^{59} +2.00000 q^{60} +14.0000 q^{62} -6.00000 q^{63} -8.00000 q^{64} +6.00000 q^{65} -4.00000 q^{67} -8.00000 q^{68} -3.00000 q^{69} +6.00000 q^{70} -12.0000 q^{71} -7.00000 q^{73} -4.00000 q^{74} +1.00000 q^{75} -2.00000 q^{76} +12.0000 q^{78} +4.00000 q^{79} -4.00000 q^{80} +1.00000 q^{81} +16.0000 q^{82} +12.0000 q^{83} +6.00000 q^{84} -4.00000 q^{85} +16.0000 q^{86} -3.00000 q^{87} -4.00000 q^{89} -4.00000 q^{90} +18.0000 q^{91} -6.00000 q^{92} +7.00000 q^{93} -16.0000 q^{94} -1.00000 q^{95} -8.00000 q^{96} +16.0000 q^{97} +4.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(3\) 1.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) 2.00000 1.00000
\(5\) 1.00000 0.447214
\(6\) 2.00000 0.816497
\(7\) 3.00000 1.13389 0.566947 0.823754i \(-0.308125\pi\)
0.566947 + 0.823754i \(0.308125\pi\)
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 2.00000 0.632456
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 2.00000 0.577350
\(13\) 6.00000 1.66410 0.832050 0.554700i \(-0.187167\pi\)
0.832050 + 0.554700i \(0.187167\pi\)
\(14\) 6.00000 1.60357
\(15\) 1.00000 0.258199
\(16\) −4.00000 −1.00000
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) −4.00000 −0.942809
\(19\) −1.00000 −0.229416 −0.114708 0.993399i \(-0.536593\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) 2.00000 0.447214
\(21\) 3.00000 0.654654
\(22\) 0 0
\(23\) −3.00000 −0.625543 −0.312772 0.949828i \(-0.601257\pi\)
−0.312772 + 0.949828i \(0.601257\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 12.0000 2.35339
\(27\) −5.00000 −0.962250
\(28\) 6.00000 1.13389
\(29\) −3.00000 −0.557086 −0.278543 0.960424i \(-0.589851\pi\)
−0.278543 + 0.960424i \(0.589851\pi\)
\(30\) 2.00000 0.365148
\(31\) 7.00000 1.25724 0.628619 0.777714i \(-0.283621\pi\)
0.628619 + 0.777714i \(0.283621\pi\)
\(32\) −8.00000 −1.41421
\(33\) 0 0
\(34\) −8.00000 −1.37199
\(35\) 3.00000 0.507093
\(36\) −4.00000 −0.666667
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) −2.00000 −0.324443
\(39\) 6.00000 0.960769
\(40\) 0 0
\(41\) 8.00000 1.24939 0.624695 0.780869i \(-0.285223\pi\)
0.624695 + 0.780869i \(0.285223\pi\)
\(42\) 6.00000 0.925820
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 0 0
\(45\) −2.00000 −0.298142
\(46\) −6.00000 −0.884652
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) −4.00000 −0.577350
\(49\) 2.00000 0.285714
\(50\) 2.00000 0.282843
\(51\) −4.00000 −0.560112
\(52\) 12.0000 1.66410
\(53\) −10.0000 −1.37361 −0.686803 0.726844i \(-0.740986\pi\)
−0.686803 + 0.726844i \(0.740986\pi\)
\(54\) −10.0000 −1.36083
\(55\) 0 0
\(56\) 0 0
\(57\) −1.00000 −0.132453
\(58\) −6.00000 −0.787839
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 2.00000 0.258199
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 14.0000 1.77800
\(63\) −6.00000 −0.755929
\(64\) −8.00000 −1.00000
\(65\) 6.00000 0.744208
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) −8.00000 −0.970143
\(69\) −3.00000 −0.361158
\(70\) 6.00000 0.717137
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) −7.00000 −0.819288 −0.409644 0.912245i \(-0.634347\pi\)
−0.409644 + 0.912245i \(0.634347\pi\)
\(74\) −4.00000 −0.464991
\(75\) 1.00000 0.115470
\(76\) −2.00000 −0.229416
\(77\) 0 0
\(78\) 12.0000 1.35873
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) −4.00000 −0.447214
\(81\) 1.00000 0.111111
\(82\) 16.0000 1.76690
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 6.00000 0.654654
\(85\) −4.00000 −0.433861
\(86\) 16.0000 1.72532
\(87\) −3.00000 −0.321634
\(88\) 0 0
\(89\) −4.00000 −0.423999 −0.212000 0.977270i \(-0.567998\pi\)
−0.212000 + 0.977270i \(0.567998\pi\)
\(90\) −4.00000 −0.421637
\(91\) 18.0000 1.88691
\(92\) −6.00000 −0.625543
\(93\) 7.00000 0.725866
\(94\) −16.0000 −1.65027
\(95\) −1.00000 −0.102598
\(96\) −8.00000 −0.816497
\(97\) 16.0000 1.62455 0.812277 0.583272i \(-0.198228\pi\)
0.812277 + 0.583272i \(0.198228\pi\)
\(98\) 4.00000 0.404061
\(99\) 0 0
\(100\) 2.00000 0.200000
\(101\) 10.0000 0.995037 0.497519 0.867453i \(-0.334245\pi\)
0.497519 + 0.867453i \(0.334245\pi\)
\(102\) −8.00000 −0.792118
\(103\) 6.00000 0.591198 0.295599 0.955312i \(-0.404481\pi\)
0.295599 + 0.955312i \(0.404481\pi\)
\(104\) 0 0
\(105\) 3.00000 0.292770
\(106\) −20.0000 −1.94257
\(107\) −17.0000 −1.64345 −0.821726 0.569883i \(-0.806989\pi\)
−0.821726 + 0.569883i \(0.806989\pi\)
\(108\) −10.0000 −0.962250
\(109\) −6.00000 −0.574696 −0.287348 0.957826i \(-0.592774\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) 0 0
\(111\) −2.00000 −0.189832
\(112\) −12.0000 −1.13389
\(113\) −11.0000 −1.03479 −0.517396 0.855746i \(-0.673099\pi\)
−0.517396 + 0.855746i \(0.673099\pi\)
\(114\) −2.00000 −0.187317
\(115\) −3.00000 −0.279751
\(116\) −6.00000 −0.557086
\(117\) −12.0000 −1.10940
\(118\) −8.00000 −0.736460
\(119\) −12.0000 −1.10004
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 8.00000 0.721336
\(124\) 14.0000 1.25724
\(125\) 1.00000 0.0894427
\(126\) −12.0000 −1.06904
\(127\) −2.00000 −0.177471 −0.0887357 0.996055i \(-0.528283\pi\)
−0.0887357 + 0.996055i \(0.528283\pi\)
\(128\) 0 0
\(129\) 8.00000 0.704361
\(130\) 12.0000 1.05247
\(131\) 18.0000 1.57267 0.786334 0.617802i \(-0.211977\pi\)
0.786334 + 0.617802i \(0.211977\pi\)
\(132\) 0 0
\(133\) −3.00000 −0.260133
\(134\) −8.00000 −0.691095
\(135\) −5.00000 −0.430331
\(136\) 0 0
\(137\) 12.0000 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) −6.00000 −0.510754
\(139\) 3.00000 0.254457 0.127228 0.991873i \(-0.459392\pi\)
0.127228 + 0.991873i \(0.459392\pi\)
\(140\) 6.00000 0.507093
\(141\) −8.00000 −0.673722
\(142\) −24.0000 −2.01404
\(143\) 0 0
\(144\) 8.00000 0.666667
\(145\) −3.00000 −0.249136
\(146\) −14.0000 −1.15865
\(147\) 2.00000 0.164957
\(148\) −4.00000 −0.328798
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 2.00000 0.163299
\(151\) −1.00000 −0.0813788
\(152\) 0 0
\(153\) 8.00000 0.646762
\(154\) 0 0
\(155\) 7.00000 0.562254
\(156\) 12.0000 0.960769
\(157\) −13.0000 −1.03751 −0.518756 0.854922i \(-0.673605\pi\)
−0.518756 + 0.854922i \(0.673605\pi\)
\(158\) 8.00000 0.636446
\(159\) −10.0000 −0.793052
\(160\) −8.00000 −0.632456
\(161\) −9.00000 −0.709299
\(162\) 2.00000 0.157135
\(163\) −5.00000 −0.391630 −0.195815 0.980641i \(-0.562735\pi\)
−0.195815 + 0.980641i \(0.562735\pi\)
\(164\) 16.0000 1.24939
\(165\) 0 0
\(166\) 24.0000 1.86276
\(167\) 18.0000 1.39288 0.696441 0.717614i \(-0.254766\pi\)
0.696441 + 0.717614i \(0.254766\pi\)
\(168\) 0 0
\(169\) 23.0000 1.76923
\(170\) −8.00000 −0.613572
\(171\) 2.00000 0.152944
\(172\) 16.0000 1.21999
\(173\) −8.00000 −0.608229 −0.304114 0.952636i \(-0.598361\pi\)
−0.304114 + 0.952636i \(0.598361\pi\)
\(174\) −6.00000 −0.454859
\(175\) 3.00000 0.226779
\(176\) 0 0
\(177\) −4.00000 −0.300658
\(178\) −8.00000 −0.599625
\(179\) −18.0000 −1.34538 −0.672692 0.739923i \(-0.734862\pi\)
−0.672692 + 0.739923i \(0.734862\pi\)
\(180\) −4.00000 −0.298142
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 36.0000 2.66850
\(183\) 0 0
\(184\) 0 0
\(185\) −2.00000 −0.147043
\(186\) 14.0000 1.02653
\(187\) 0 0
\(188\) −16.0000 −1.16692
\(189\) −15.0000 −1.09109
\(190\) −2.00000 −0.145095
\(191\) 13.0000 0.940647 0.470323 0.882494i \(-0.344137\pi\)
0.470323 + 0.882494i \(0.344137\pi\)
\(192\) −8.00000 −0.577350
\(193\) 4.00000 0.287926 0.143963 0.989583i \(-0.454015\pi\)
0.143963 + 0.989583i \(0.454015\pi\)
\(194\) 32.0000 2.29747
\(195\) 6.00000 0.429669
\(196\) 4.00000 0.285714
\(197\) 9.00000 0.641223 0.320612 0.947211i \(-0.396112\pi\)
0.320612 + 0.947211i \(0.396112\pi\)
\(198\) 0 0
\(199\) −20.0000 −1.41776 −0.708881 0.705328i \(-0.750800\pi\)
−0.708881 + 0.705328i \(0.750800\pi\)
\(200\) 0 0
\(201\) −4.00000 −0.282138
\(202\) 20.0000 1.40720
\(203\) −9.00000 −0.631676
\(204\) −8.00000 −0.560112
\(205\) 8.00000 0.558744
\(206\) 12.0000 0.836080
\(207\) 6.00000 0.417029
\(208\) −24.0000 −1.66410
\(209\) 0 0
\(210\) 6.00000 0.414039
\(211\) 22.0000 1.51454 0.757271 0.653101i \(-0.226532\pi\)
0.757271 + 0.653101i \(0.226532\pi\)
\(212\) −20.0000 −1.37361
\(213\) −12.0000 −0.822226
\(214\) −34.0000 −2.32419
\(215\) 8.00000 0.545595
\(216\) 0 0
\(217\) 21.0000 1.42557
\(218\) −12.0000 −0.812743
\(219\) −7.00000 −0.473016
\(220\) 0 0
\(221\) −24.0000 −1.61441
\(222\) −4.00000 −0.268462
\(223\) −10.0000 −0.669650 −0.334825 0.942280i \(-0.608677\pi\)
−0.334825 + 0.942280i \(0.608677\pi\)
\(224\) −24.0000 −1.60357
\(225\) −2.00000 −0.133333
\(226\) −22.0000 −1.46342
\(227\) 6.00000 0.398234 0.199117 0.979976i \(-0.436193\pi\)
0.199117 + 0.979976i \(0.436193\pi\)
\(228\) −2.00000 −0.132453
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) −6.00000 −0.395628
\(231\) 0 0
\(232\) 0 0
\(233\) 18.0000 1.17922 0.589610 0.807688i \(-0.299282\pi\)
0.589610 + 0.807688i \(0.299282\pi\)
\(234\) −24.0000 −1.56893
\(235\) −8.00000 −0.521862
\(236\) −8.00000 −0.520756
\(237\) 4.00000 0.259828
\(238\) −24.0000 −1.55569
\(239\) 13.0000 0.840900 0.420450 0.907316i \(-0.361872\pi\)
0.420450 + 0.907316i \(0.361872\pi\)
\(240\) −4.00000 −0.258199
\(241\) 17.0000 1.09507 0.547533 0.836784i \(-0.315567\pi\)
0.547533 + 0.836784i \(0.315567\pi\)
\(242\) −22.0000 −1.41421
\(243\) 16.0000 1.02640
\(244\) 0 0
\(245\) 2.00000 0.127775
\(246\) 16.0000 1.02012
\(247\) −6.00000 −0.381771
\(248\) 0 0
\(249\) 12.0000 0.760469
\(250\) 2.00000 0.126491
\(251\) −9.00000 −0.568075 −0.284037 0.958813i \(-0.591674\pi\)
−0.284037 + 0.958813i \(0.591674\pi\)
\(252\) −12.0000 −0.755929
\(253\) 0 0
\(254\) −4.00000 −0.250982
\(255\) −4.00000 −0.250490
\(256\) 16.0000 1.00000
\(257\) 27.0000 1.68421 0.842107 0.539311i \(-0.181315\pi\)
0.842107 + 0.539311i \(0.181315\pi\)
\(258\) 16.0000 0.996116
\(259\) −6.00000 −0.372822
\(260\) 12.0000 0.744208
\(261\) 6.00000 0.371391
\(262\) 36.0000 2.22409
\(263\) 21.0000 1.29492 0.647458 0.762101i \(-0.275832\pi\)
0.647458 + 0.762101i \(0.275832\pi\)
\(264\) 0 0
\(265\) −10.0000 −0.614295
\(266\) −6.00000 −0.367884
\(267\) −4.00000 −0.244796
\(268\) −8.00000 −0.488678
\(269\) −5.00000 −0.304855 −0.152428 0.988315i \(-0.548709\pi\)
−0.152428 + 0.988315i \(0.548709\pi\)
\(270\) −10.0000 −0.608581
\(271\) −14.0000 −0.850439 −0.425220 0.905090i \(-0.639803\pi\)
−0.425220 + 0.905090i \(0.639803\pi\)
\(272\) 16.0000 0.970143
\(273\) 18.0000 1.08941
\(274\) 24.0000 1.44989
\(275\) 0 0
\(276\) −6.00000 −0.361158
\(277\) 6.00000 0.360505 0.180253 0.983620i \(-0.442309\pi\)
0.180253 + 0.983620i \(0.442309\pi\)
\(278\) 6.00000 0.359856
\(279\) −14.0000 −0.838158
\(280\) 0 0
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) −16.0000 −0.952786
\(283\) −13.0000 −0.772770 −0.386385 0.922338i \(-0.626276\pi\)
−0.386385 + 0.922338i \(0.626276\pi\)
\(284\) −24.0000 −1.42414
\(285\) −1.00000 −0.0592349
\(286\) 0 0
\(287\) 24.0000 1.41668
\(288\) 16.0000 0.942809
\(289\) −1.00000 −0.0588235
\(290\) −6.00000 −0.352332
\(291\) 16.0000 0.937937
\(292\) −14.0000 −0.819288
\(293\) −21.0000 −1.22683 −0.613417 0.789760i \(-0.710205\pi\)
−0.613417 + 0.789760i \(0.710205\pi\)
\(294\) 4.00000 0.233285
\(295\) −4.00000 −0.232889
\(296\) 0 0
\(297\) 0 0
\(298\) 12.0000 0.695141
\(299\) −18.0000 −1.04097
\(300\) 2.00000 0.115470
\(301\) 24.0000 1.38334
\(302\) −2.00000 −0.115087
\(303\) 10.0000 0.574485
\(304\) 4.00000 0.229416
\(305\) 0 0
\(306\) 16.0000 0.914659
\(307\) −4.00000 −0.228292 −0.114146 0.993464i \(-0.536413\pi\)
−0.114146 + 0.993464i \(0.536413\pi\)
\(308\) 0 0
\(309\) 6.00000 0.341328
\(310\) 14.0000 0.795147
\(311\) −17.0000 −0.963982 −0.481991 0.876176i \(-0.660086\pi\)
−0.481991 + 0.876176i \(0.660086\pi\)
\(312\) 0 0
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) −26.0000 −1.46726
\(315\) −6.00000 −0.338062
\(316\) 8.00000 0.450035
\(317\) 33.0000 1.85346 0.926732 0.375722i \(-0.122605\pi\)
0.926732 + 0.375722i \(0.122605\pi\)
\(318\) −20.0000 −1.12154
\(319\) 0 0
\(320\) −8.00000 −0.447214
\(321\) −17.0000 −0.948847
\(322\) −18.0000 −1.00310
\(323\) 4.00000 0.222566
\(324\) 2.00000 0.111111
\(325\) 6.00000 0.332820
\(326\) −10.0000 −0.553849
\(327\) −6.00000 −0.331801
\(328\) 0 0
\(329\) −24.0000 −1.32316
\(330\) 0 0
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) 24.0000 1.31717
\(333\) 4.00000 0.219199
\(334\) 36.0000 1.96983
\(335\) −4.00000 −0.218543
\(336\) −12.0000 −0.654654
\(337\) 23.0000 1.25289 0.626445 0.779466i \(-0.284509\pi\)
0.626445 + 0.779466i \(0.284509\pi\)
\(338\) 46.0000 2.50207
\(339\) −11.0000 −0.597438
\(340\) −8.00000 −0.433861
\(341\) 0 0
\(342\) 4.00000 0.216295
\(343\) −15.0000 −0.809924
\(344\) 0 0
\(345\) −3.00000 −0.161515
\(346\) −16.0000 −0.860165
\(347\) −14.0000 −0.751559 −0.375780 0.926709i \(-0.622625\pi\)
−0.375780 + 0.926709i \(0.622625\pi\)
\(348\) −6.00000 −0.321634
\(349\) 19.0000 1.01705 0.508523 0.861048i \(-0.330192\pi\)
0.508523 + 0.861048i \(0.330192\pi\)
\(350\) 6.00000 0.320713
\(351\) −30.0000 −1.60128
\(352\) 0 0
\(353\) 37.0000 1.96931 0.984656 0.174509i \(-0.0558337\pi\)
0.984656 + 0.174509i \(0.0558337\pi\)
\(354\) −8.00000 −0.425195
\(355\) −12.0000 −0.636894
\(356\) −8.00000 −0.423999
\(357\) −12.0000 −0.635107
\(358\) −36.0000 −1.90266
\(359\) 10.0000 0.527780 0.263890 0.964553i \(-0.414994\pi\)
0.263890 + 0.964553i \(0.414994\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) −4.00000 −0.210235
\(363\) −11.0000 −0.577350
\(364\) 36.0000 1.88691
\(365\) −7.00000 −0.366397
\(366\) 0 0
\(367\) −12.0000 −0.626395 −0.313197 0.949688i \(-0.601400\pi\)
−0.313197 + 0.949688i \(0.601400\pi\)
\(368\) 12.0000 0.625543
\(369\) −16.0000 −0.832927
\(370\) −4.00000 −0.207950
\(371\) −30.0000 −1.55752
\(372\) 14.0000 0.725866
\(373\) 29.0000 1.50156 0.750782 0.660551i \(-0.229677\pi\)
0.750782 + 0.660551i \(0.229677\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) −18.0000 −0.927047
\(378\) −30.0000 −1.54303
\(379\) 34.0000 1.74646 0.873231 0.487306i \(-0.162020\pi\)
0.873231 + 0.487306i \(0.162020\pi\)
\(380\) −2.00000 −0.102598
\(381\) −2.00000 −0.102463
\(382\) 26.0000 1.33028
\(383\) 14.0000 0.715367 0.357683 0.933843i \(-0.383567\pi\)
0.357683 + 0.933843i \(0.383567\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 8.00000 0.407189
\(387\) −16.0000 −0.813326
\(388\) 32.0000 1.62455
\(389\) −10.0000 −0.507020 −0.253510 0.967333i \(-0.581585\pi\)
−0.253510 + 0.967333i \(0.581585\pi\)
\(390\) 12.0000 0.607644
\(391\) 12.0000 0.606866
\(392\) 0 0
\(393\) 18.0000 0.907980
\(394\) 18.0000 0.906827
\(395\) 4.00000 0.201262
\(396\) 0 0
\(397\) 26.0000 1.30490 0.652451 0.757831i \(-0.273741\pi\)
0.652451 + 0.757831i \(0.273741\pi\)
\(398\) −40.0000 −2.00502
\(399\) −3.00000 −0.150188
\(400\) −4.00000 −0.200000
\(401\) 9.00000 0.449439 0.224719 0.974424i \(-0.427853\pi\)
0.224719 + 0.974424i \(0.427853\pi\)
\(402\) −8.00000 −0.399004
\(403\) 42.0000 2.09217
\(404\) 20.0000 0.995037
\(405\) 1.00000 0.0496904
\(406\) −18.0000 −0.893325
\(407\) 0 0
\(408\) 0 0
\(409\) 12.0000 0.593362 0.296681 0.954977i \(-0.404120\pi\)
0.296681 + 0.954977i \(0.404120\pi\)
\(410\) 16.0000 0.790184
\(411\) 12.0000 0.591916
\(412\) 12.0000 0.591198
\(413\) −12.0000 −0.590481
\(414\) 12.0000 0.589768
\(415\) 12.0000 0.589057
\(416\) −48.0000 −2.35339
\(417\) 3.00000 0.146911
\(418\) 0 0
\(419\) −24.0000 −1.17248 −0.586238 0.810139i \(-0.699392\pi\)
−0.586238 + 0.810139i \(0.699392\pi\)
\(420\) 6.00000 0.292770
\(421\) −28.0000 −1.36464 −0.682318 0.731055i \(-0.739028\pi\)
−0.682318 + 0.731055i \(0.739028\pi\)
\(422\) 44.0000 2.14189
\(423\) 16.0000 0.777947
\(424\) 0 0
\(425\) −4.00000 −0.194029
\(426\) −24.0000 −1.16280
\(427\) 0 0
\(428\) −34.0000 −1.64345
\(429\) 0 0
\(430\) 16.0000 0.771589
\(431\) −10.0000 −0.481683 −0.240842 0.970564i \(-0.577423\pi\)
−0.240842 + 0.970564i \(0.577423\pi\)
\(432\) 20.0000 0.962250
\(433\) 17.0000 0.816968 0.408484 0.912766i \(-0.366058\pi\)
0.408484 + 0.912766i \(0.366058\pi\)
\(434\) 42.0000 2.01606
\(435\) −3.00000 −0.143839
\(436\) −12.0000 −0.574696
\(437\) 3.00000 0.143509
\(438\) −14.0000 −0.668946
\(439\) −31.0000 −1.47955 −0.739775 0.672855i \(-0.765068\pi\)
−0.739775 + 0.672855i \(0.765068\pi\)
\(440\) 0 0
\(441\) −4.00000 −0.190476
\(442\) −48.0000 −2.28313
\(443\) −1.00000 −0.0475114 −0.0237557 0.999718i \(-0.507562\pi\)
−0.0237557 + 0.999718i \(0.507562\pi\)
\(444\) −4.00000 −0.189832
\(445\) −4.00000 −0.189618
\(446\) −20.0000 −0.947027
\(447\) 6.00000 0.283790
\(448\) −24.0000 −1.13389
\(449\) −26.0000 −1.22702 −0.613508 0.789689i \(-0.710242\pi\)
−0.613508 + 0.789689i \(0.710242\pi\)
\(450\) −4.00000 −0.188562
\(451\) 0 0
\(452\) −22.0000 −1.03479
\(453\) −1.00000 −0.0469841
\(454\) 12.0000 0.563188
\(455\) 18.0000 0.843853
\(456\) 0 0
\(457\) −8.00000 −0.374224 −0.187112 0.982339i \(-0.559913\pi\)
−0.187112 + 0.982339i \(0.559913\pi\)
\(458\) 12.0000 0.560723
\(459\) 20.0000 0.933520
\(460\) −6.00000 −0.279751
\(461\) −5.00000 −0.232873 −0.116437 0.993198i \(-0.537147\pi\)
−0.116437 + 0.993198i \(0.537147\pi\)
\(462\) 0 0
\(463\) 20.0000 0.929479 0.464739 0.885448i \(-0.346148\pi\)
0.464739 + 0.885448i \(0.346148\pi\)
\(464\) 12.0000 0.557086
\(465\) 7.00000 0.324617
\(466\) 36.0000 1.66767
\(467\) −36.0000 −1.66588 −0.832941 0.553362i \(-0.813345\pi\)
−0.832941 + 0.553362i \(0.813345\pi\)
\(468\) −24.0000 −1.10940
\(469\) −12.0000 −0.554109
\(470\) −16.0000 −0.738025
\(471\) −13.0000 −0.599008
\(472\) 0 0
\(473\) 0 0
\(474\) 8.00000 0.367452
\(475\) −1.00000 −0.0458831
\(476\) −24.0000 −1.10004
\(477\) 20.0000 0.915737
\(478\) 26.0000 1.18921
\(479\) 10.0000 0.456912 0.228456 0.973554i \(-0.426632\pi\)
0.228456 + 0.973554i \(0.426632\pi\)
\(480\) −8.00000 −0.365148
\(481\) −12.0000 −0.547153
\(482\) 34.0000 1.54866
\(483\) −9.00000 −0.409514
\(484\) −22.0000 −1.00000
\(485\) 16.0000 0.726523
\(486\) 32.0000 1.45155
\(487\) −8.00000 −0.362515 −0.181257 0.983436i \(-0.558017\pi\)
−0.181257 + 0.983436i \(0.558017\pi\)
\(488\) 0 0
\(489\) −5.00000 −0.226108
\(490\) 4.00000 0.180702
\(491\) 15.0000 0.676941 0.338470 0.940977i \(-0.390091\pi\)
0.338470 + 0.940977i \(0.390091\pi\)
\(492\) 16.0000 0.721336
\(493\) 12.0000 0.540453
\(494\) −12.0000 −0.539906
\(495\) 0 0
\(496\) −28.0000 −1.25724
\(497\) −36.0000 −1.61482
\(498\) 24.0000 1.07547
\(499\) −24.0000 −1.07439 −0.537194 0.843459i \(-0.680516\pi\)
−0.537194 + 0.843459i \(0.680516\pi\)
\(500\) 2.00000 0.0894427
\(501\) 18.0000 0.804181
\(502\) −18.0000 −0.803379
\(503\) 30.0000 1.33763 0.668817 0.743427i \(-0.266801\pi\)
0.668817 + 0.743427i \(0.266801\pi\)
\(504\) 0 0
\(505\) 10.0000 0.444994
\(506\) 0 0
\(507\) 23.0000 1.02147
\(508\) −4.00000 −0.177471
\(509\) 32.0000 1.41838 0.709188 0.705020i \(-0.249062\pi\)
0.709188 + 0.705020i \(0.249062\pi\)
\(510\) −8.00000 −0.354246
\(511\) −21.0000 −0.928985
\(512\) 32.0000 1.41421
\(513\) 5.00000 0.220755
\(514\) 54.0000 2.38184
\(515\) 6.00000 0.264392
\(516\) 16.0000 0.704361
\(517\) 0 0
\(518\) −12.0000 −0.527250
\(519\) −8.00000 −0.351161
\(520\) 0 0
\(521\) −15.0000 −0.657162 −0.328581 0.944476i \(-0.606570\pi\)
−0.328581 + 0.944476i \(0.606570\pi\)
\(522\) 12.0000 0.525226
\(523\) −20.0000 −0.874539 −0.437269 0.899331i \(-0.644054\pi\)
−0.437269 + 0.899331i \(0.644054\pi\)
\(524\) 36.0000 1.57267
\(525\) 3.00000 0.130931
\(526\) 42.0000 1.83129
\(527\) −28.0000 −1.21970
\(528\) 0 0
\(529\) −14.0000 −0.608696
\(530\) −20.0000 −0.868744
\(531\) 8.00000 0.347170
\(532\) −6.00000 −0.260133
\(533\) 48.0000 2.07911
\(534\) −8.00000 −0.346194
\(535\) −17.0000 −0.734974
\(536\) 0 0
\(537\) −18.0000 −0.776757
\(538\) −10.0000 −0.431131
\(539\) 0 0
\(540\) −10.0000 −0.430331
\(541\) −15.0000 −0.644900 −0.322450 0.946586i \(-0.604506\pi\)
−0.322450 + 0.946586i \(0.604506\pi\)
\(542\) −28.0000 −1.20270
\(543\) −2.00000 −0.0858282
\(544\) 32.0000 1.37199
\(545\) −6.00000 −0.257012
\(546\) 36.0000 1.54066
\(547\) −22.0000 −0.940652 −0.470326 0.882493i \(-0.655864\pi\)
−0.470326 + 0.882493i \(0.655864\pi\)
\(548\) 24.0000 1.02523
\(549\) 0 0
\(550\) 0 0
\(551\) 3.00000 0.127804
\(552\) 0 0
\(553\) 12.0000 0.510292
\(554\) 12.0000 0.509831
\(555\) −2.00000 −0.0848953
\(556\) 6.00000 0.254457
\(557\) 30.0000 1.27114 0.635570 0.772043i \(-0.280765\pi\)
0.635570 + 0.772043i \(0.280765\pi\)
\(558\) −28.0000 −1.18533
\(559\) 48.0000 2.03018
\(560\) −12.0000 −0.507093
\(561\) 0 0
\(562\) 36.0000 1.51857
\(563\) 14.0000 0.590030 0.295015 0.955493i \(-0.404675\pi\)
0.295015 + 0.955493i \(0.404675\pi\)
\(564\) −16.0000 −0.673722
\(565\) −11.0000 −0.462773
\(566\) −26.0000 −1.09286
\(567\) 3.00000 0.125988
\(568\) 0 0
\(569\) −23.0000 −0.964210 −0.482105 0.876113i \(-0.660128\pi\)
−0.482105 + 0.876113i \(0.660128\pi\)
\(570\) −2.00000 −0.0837708
\(571\) 36.0000 1.50655 0.753277 0.657704i \(-0.228472\pi\)
0.753277 + 0.657704i \(0.228472\pi\)
\(572\) 0 0
\(573\) 13.0000 0.543083
\(574\) 48.0000 2.00348
\(575\) −3.00000 −0.125109
\(576\) 16.0000 0.666667
\(577\) 34.0000 1.41544 0.707719 0.706494i \(-0.249724\pi\)
0.707719 + 0.706494i \(0.249724\pi\)
\(578\) −2.00000 −0.0831890
\(579\) 4.00000 0.166234
\(580\) −6.00000 −0.249136
\(581\) 36.0000 1.49353
\(582\) 32.0000 1.32644
\(583\) 0 0
\(584\) 0 0
\(585\) −12.0000 −0.496139
\(586\) −42.0000 −1.73500
\(587\) −45.0000 −1.85735 −0.928674 0.370896i \(-0.879051\pi\)
−0.928674 + 0.370896i \(0.879051\pi\)
\(588\) 4.00000 0.164957
\(589\) −7.00000 −0.288430
\(590\) −8.00000 −0.329355
\(591\) 9.00000 0.370211
\(592\) 8.00000 0.328798
\(593\) −21.0000 −0.862367 −0.431183 0.902264i \(-0.641904\pi\)
−0.431183 + 0.902264i \(0.641904\pi\)
\(594\) 0 0
\(595\) −12.0000 −0.491952
\(596\) 12.0000 0.491539
\(597\) −20.0000 −0.818546
\(598\) −36.0000 −1.47215
\(599\) −28.0000 −1.14405 −0.572024 0.820237i \(-0.693842\pi\)
−0.572024 + 0.820237i \(0.693842\pi\)
\(600\) 0 0
\(601\) −43.0000 −1.75401 −0.877003 0.480484i \(-0.840461\pi\)
−0.877003 + 0.480484i \(0.840461\pi\)
\(602\) 48.0000 1.95633
\(603\) 8.00000 0.325785
\(604\) −2.00000 −0.0813788
\(605\) −11.0000 −0.447214
\(606\) 20.0000 0.812444
\(607\) −43.0000 −1.74532 −0.872658 0.488332i \(-0.837606\pi\)
−0.872658 + 0.488332i \(0.837606\pi\)
\(608\) 8.00000 0.324443
\(609\) −9.00000 −0.364698
\(610\) 0 0
\(611\) −48.0000 −1.94187
\(612\) 16.0000 0.646762
\(613\) 42.0000 1.69636 0.848182 0.529705i \(-0.177697\pi\)
0.848182 + 0.529705i \(0.177697\pi\)
\(614\) −8.00000 −0.322854
\(615\) 8.00000 0.322591
\(616\) 0 0
\(617\) 9.00000 0.362326 0.181163 0.983453i \(-0.442014\pi\)
0.181163 + 0.983453i \(0.442014\pi\)
\(618\) 12.0000 0.482711
\(619\) 6.00000 0.241160 0.120580 0.992704i \(-0.461525\pi\)
0.120580 + 0.992704i \(0.461525\pi\)
\(620\) 14.0000 0.562254
\(621\) 15.0000 0.601929
\(622\) −34.0000 −1.36328
\(623\) −12.0000 −0.480770
\(624\) −24.0000 −0.960769
\(625\) 1.00000 0.0400000
\(626\) −12.0000 −0.479616
\(627\) 0 0
\(628\) −26.0000 −1.03751
\(629\) 8.00000 0.318981
\(630\) −12.0000 −0.478091
\(631\) 2.00000 0.0796187 0.0398094 0.999207i \(-0.487325\pi\)
0.0398094 + 0.999207i \(0.487325\pi\)
\(632\) 0 0
\(633\) 22.0000 0.874421
\(634\) 66.0000 2.62119
\(635\) −2.00000 −0.0793676
\(636\) −20.0000 −0.793052
\(637\) 12.0000 0.475457
\(638\) 0 0
\(639\) 24.0000 0.949425
\(640\) 0 0
\(641\) −34.0000 −1.34292 −0.671460 0.741041i \(-0.734332\pi\)
−0.671460 + 0.741041i \(0.734332\pi\)
\(642\) −34.0000 −1.34187
\(643\) −40.0000 −1.57745 −0.788723 0.614749i \(-0.789257\pi\)
−0.788723 + 0.614749i \(0.789257\pi\)
\(644\) −18.0000 −0.709299
\(645\) 8.00000 0.315000
\(646\) 8.00000 0.314756
\(647\) −26.0000 −1.02217 −0.511083 0.859532i \(-0.670755\pi\)
−0.511083 + 0.859532i \(0.670755\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 12.0000 0.470679
\(651\) 21.0000 0.823055
\(652\) −10.0000 −0.391630
\(653\) −24.0000 −0.939193 −0.469596 0.882881i \(-0.655601\pi\)
−0.469596 + 0.882881i \(0.655601\pi\)
\(654\) −12.0000 −0.469237
\(655\) 18.0000 0.703318
\(656\) −32.0000 −1.24939
\(657\) 14.0000 0.546192
\(658\) −48.0000 −1.87123
\(659\) −3.00000 −0.116863 −0.0584317 0.998291i \(-0.518610\pi\)
−0.0584317 + 0.998291i \(0.518610\pi\)
\(660\) 0 0
\(661\) 24.0000 0.933492 0.466746 0.884391i \(-0.345426\pi\)
0.466746 + 0.884391i \(0.345426\pi\)
\(662\) −8.00000 −0.310929
\(663\) −24.0000 −0.932083
\(664\) 0 0
\(665\) −3.00000 −0.116335
\(666\) 8.00000 0.309994
\(667\) 9.00000 0.348481
\(668\) 36.0000 1.39288
\(669\) −10.0000 −0.386622
\(670\) −8.00000 −0.309067
\(671\) 0 0
\(672\) −24.0000 −0.925820
\(673\) 26.0000 1.00223 0.501113 0.865382i \(-0.332924\pi\)
0.501113 + 0.865382i \(0.332924\pi\)
\(674\) 46.0000 1.77185
\(675\) −5.00000 −0.192450
\(676\) 46.0000 1.76923
\(677\) −15.0000 −0.576497 −0.288248 0.957556i \(-0.593073\pi\)
−0.288248 + 0.957556i \(0.593073\pi\)
\(678\) −22.0000 −0.844905
\(679\) 48.0000 1.84207
\(680\) 0 0
\(681\) 6.00000 0.229920
\(682\) 0 0
\(683\) 3.00000 0.114792 0.0573959 0.998351i \(-0.481720\pi\)
0.0573959 + 0.998351i \(0.481720\pi\)
\(684\) 4.00000 0.152944
\(685\) 12.0000 0.458496
\(686\) −30.0000 −1.14541
\(687\) 6.00000 0.228914
\(688\) −32.0000 −1.21999
\(689\) −60.0000 −2.28582
\(690\) −6.00000 −0.228416
\(691\) −26.0000 −0.989087 −0.494543 0.869153i \(-0.664665\pi\)
−0.494543 + 0.869153i \(0.664665\pi\)
\(692\) −16.0000 −0.608229
\(693\) 0 0
\(694\) −28.0000 −1.06287
\(695\) 3.00000 0.113796
\(696\) 0 0
\(697\) −32.0000 −1.21209
\(698\) 38.0000 1.43832
\(699\) 18.0000 0.680823
\(700\) 6.00000 0.226779
\(701\) −11.0000 −0.415464 −0.207732 0.978186i \(-0.566608\pi\)
−0.207732 + 0.978186i \(0.566608\pi\)
\(702\) −60.0000 −2.26455
\(703\) 2.00000 0.0754314
\(704\) 0 0
\(705\) −8.00000 −0.301297
\(706\) 74.0000 2.78503
\(707\) 30.0000 1.12827
\(708\) −8.00000 −0.300658
\(709\) 17.0000 0.638448 0.319224 0.947679i \(-0.396578\pi\)
0.319224 + 0.947679i \(0.396578\pi\)
\(710\) −24.0000 −0.900704
\(711\) −8.00000 −0.300023
\(712\) 0 0
\(713\) −21.0000 −0.786456
\(714\) −24.0000 −0.898177
\(715\) 0 0
\(716\) −36.0000 −1.34538
\(717\) 13.0000 0.485494
\(718\) 20.0000 0.746393
\(719\) −20.0000 −0.745874 −0.372937 0.927857i \(-0.621649\pi\)
−0.372937 + 0.927857i \(0.621649\pi\)
\(720\) 8.00000 0.298142
\(721\) 18.0000 0.670355
\(722\) −36.0000 −1.33978
\(723\) 17.0000 0.632237
\(724\) −4.00000 −0.148659
\(725\) −3.00000 −0.111417
\(726\) −22.0000 −0.816497
\(727\) 2.00000 0.0741759 0.0370879 0.999312i \(-0.488192\pi\)
0.0370879 + 0.999312i \(0.488192\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) −14.0000 −0.518163
\(731\) −32.0000 −1.18356
\(732\) 0 0
\(733\) −3.00000 −0.110808 −0.0554038 0.998464i \(-0.517645\pi\)
−0.0554038 + 0.998464i \(0.517645\pi\)
\(734\) −24.0000 −0.885856
\(735\) 2.00000 0.0737711
\(736\) 24.0000 0.884652
\(737\) 0 0
\(738\) −32.0000 −1.17794
\(739\) 30.0000 1.10357 0.551784 0.833987i \(-0.313947\pi\)
0.551784 + 0.833987i \(0.313947\pi\)
\(740\) −4.00000 −0.147043
\(741\) −6.00000 −0.220416
\(742\) −60.0000 −2.20267
\(743\) −26.0000 −0.953847 −0.476924 0.878945i \(-0.658248\pi\)
−0.476924 + 0.878945i \(0.658248\pi\)
\(744\) 0 0
\(745\) 6.00000 0.219823
\(746\) 58.0000 2.12353
\(747\) −24.0000 −0.878114
\(748\) 0 0
\(749\) −51.0000 −1.86350
\(750\) 2.00000 0.0730297
\(751\) −46.0000 −1.67856 −0.839282 0.543696i \(-0.817024\pi\)
−0.839282 + 0.543696i \(0.817024\pi\)
\(752\) 32.0000 1.16692
\(753\) −9.00000 −0.327978
\(754\) −36.0000 −1.31104
\(755\) −1.00000 −0.0363937
\(756\) −30.0000 −1.09109
\(757\) −52.0000 −1.88997 −0.944986 0.327111i \(-0.893925\pi\)
−0.944986 + 0.327111i \(0.893925\pi\)
\(758\) 68.0000 2.46987
\(759\) 0 0
\(760\) 0 0
\(761\) 22.0000 0.797499 0.398750 0.917060i \(-0.369444\pi\)
0.398750 + 0.917060i \(0.369444\pi\)
\(762\) −4.00000 −0.144905
\(763\) −18.0000 −0.651644
\(764\) 26.0000 0.940647
\(765\) 8.00000 0.289241
\(766\) 28.0000 1.01168
\(767\) −24.0000 −0.866590
\(768\) 16.0000 0.577350
\(769\) 26.0000 0.937584 0.468792 0.883309i \(-0.344689\pi\)
0.468792 + 0.883309i \(0.344689\pi\)
\(770\) 0 0
\(771\) 27.0000 0.972381
\(772\) 8.00000 0.287926
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) −32.0000 −1.15022
\(775\) 7.00000 0.251447
\(776\) 0 0
\(777\) −6.00000 −0.215249
\(778\) −20.0000 −0.717035
\(779\) −8.00000 −0.286630
\(780\) 12.0000 0.429669
\(781\) 0 0
\(782\) 24.0000 0.858238
\(783\) 15.0000 0.536056
\(784\) −8.00000 −0.285714
\(785\) −13.0000 −0.463990
\(786\) 36.0000 1.28408
\(787\) 22.0000 0.784215 0.392108 0.919919i \(-0.371746\pi\)
0.392108 + 0.919919i \(0.371746\pi\)
\(788\) 18.0000 0.641223
\(789\) 21.0000 0.747620
\(790\) 8.00000 0.284627
\(791\) −33.0000 −1.17334
\(792\) 0 0
\(793\) 0 0
\(794\) 52.0000 1.84541
\(795\) −10.0000 −0.354663
\(796\) −40.0000 −1.41776
\(797\) −12.0000 −0.425062 −0.212531 0.977154i \(-0.568171\pi\)
−0.212531 + 0.977154i \(0.568171\pi\)
\(798\) −6.00000 −0.212398
\(799\) 32.0000 1.13208
\(800\) −8.00000 −0.282843
\(801\) 8.00000 0.282666
\(802\) 18.0000 0.635602
\(803\) 0 0
\(804\) −8.00000 −0.282138
\(805\) −9.00000 −0.317208
\(806\) 84.0000 2.95877
\(807\) −5.00000 −0.176008
\(808\) 0 0
\(809\) −48.0000 −1.68759 −0.843795 0.536666i \(-0.819684\pi\)
−0.843795 + 0.536666i \(0.819684\pi\)
\(810\) 2.00000 0.0702728
\(811\) −48.0000 −1.68551 −0.842754 0.538299i \(-0.819067\pi\)
−0.842754 + 0.538299i \(0.819067\pi\)
\(812\) −18.0000 −0.631676
\(813\) −14.0000 −0.491001
\(814\) 0 0
\(815\) −5.00000 −0.175142
\(816\) 16.0000 0.560112
\(817\) −8.00000 −0.279885
\(818\) 24.0000 0.839140
\(819\) −36.0000 −1.25794
\(820\) 16.0000 0.558744
\(821\) 36.0000 1.25641 0.628204 0.778048i \(-0.283790\pi\)
0.628204 + 0.778048i \(0.283790\pi\)
\(822\) 24.0000 0.837096
\(823\) −26.0000 −0.906303 −0.453152 0.891434i \(-0.649700\pi\)
−0.453152 + 0.891434i \(0.649700\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −24.0000 −0.835067
\(827\) −40.0000 −1.39094 −0.695468 0.718557i \(-0.744803\pi\)
−0.695468 + 0.718557i \(0.744803\pi\)
\(828\) 12.0000 0.417029
\(829\) 45.0000 1.56291 0.781457 0.623959i \(-0.214477\pi\)
0.781457 + 0.623959i \(0.214477\pi\)
\(830\) 24.0000 0.833052
\(831\) 6.00000 0.208138
\(832\) −48.0000 −1.66410
\(833\) −8.00000 −0.277184
\(834\) 6.00000 0.207763
\(835\) 18.0000 0.622916
\(836\) 0 0
\(837\) −35.0000 −1.20978
\(838\) −48.0000 −1.65813
\(839\) 19.0000 0.655953 0.327976 0.944686i \(-0.393633\pi\)
0.327976 + 0.944686i \(0.393633\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) −56.0000 −1.92989
\(843\) 18.0000 0.619953
\(844\) 44.0000 1.51454
\(845\) 23.0000 0.791224
\(846\) 32.0000 1.10018
\(847\) −33.0000 −1.13389
\(848\) 40.0000 1.37361
\(849\) −13.0000 −0.446159
\(850\) −8.00000 −0.274398
\(851\) 6.00000 0.205677
\(852\) −24.0000 −0.822226
\(853\) −22.0000 −0.753266 −0.376633 0.926363i \(-0.622918\pi\)
−0.376633 + 0.926363i \(0.622918\pi\)
\(854\) 0 0
\(855\) 2.00000 0.0683986
\(856\) 0 0
\(857\) −21.0000 −0.717346 −0.358673 0.933463i \(-0.616771\pi\)
−0.358673 + 0.933463i \(0.616771\pi\)
\(858\) 0 0
\(859\) −18.0000 −0.614152 −0.307076 0.951685i \(-0.599351\pi\)
−0.307076 + 0.951685i \(0.599351\pi\)
\(860\) 16.0000 0.545595
\(861\) 24.0000 0.817918
\(862\) −20.0000 −0.681203
\(863\) −55.0000 −1.87222 −0.936111 0.351705i \(-0.885602\pi\)
−0.936111 + 0.351705i \(0.885602\pi\)
\(864\) 40.0000 1.36083
\(865\) −8.00000 −0.272008
\(866\) 34.0000 1.15537
\(867\) −1.00000 −0.0339618
\(868\) 42.0000 1.42557
\(869\) 0 0
\(870\) −6.00000 −0.203419
\(871\) −24.0000 −0.813209
\(872\) 0 0
\(873\) −32.0000 −1.08304
\(874\) 6.00000 0.202953
\(875\) 3.00000 0.101419
\(876\) −14.0000 −0.473016
\(877\) 37.0000 1.24940 0.624701 0.780864i \(-0.285221\pi\)
0.624701 + 0.780864i \(0.285221\pi\)
\(878\) −62.0000 −2.09240
\(879\) −21.0000 −0.708312
\(880\) 0 0
\(881\) −26.0000 −0.875962 −0.437981 0.898984i \(-0.644306\pi\)
−0.437981 + 0.898984i \(0.644306\pi\)
\(882\) −8.00000 −0.269374
\(883\) −22.0000 −0.740359 −0.370179 0.928960i \(-0.620704\pi\)
−0.370179 + 0.928960i \(0.620704\pi\)
\(884\) −48.0000 −1.61441
\(885\) −4.00000 −0.134459
\(886\) −2.00000 −0.0671913
\(887\) −21.0000 −0.705111 −0.352555 0.935791i \(-0.614687\pi\)
−0.352555 + 0.935791i \(0.614687\pi\)
\(888\) 0 0
\(889\) −6.00000 −0.201234
\(890\) −8.00000 −0.268161
\(891\) 0 0
\(892\) −20.0000 −0.669650
\(893\) 8.00000 0.267710
\(894\) 12.0000 0.401340
\(895\) −18.0000 −0.601674
\(896\) 0 0
\(897\) −18.0000 −0.601003
\(898\) −52.0000 −1.73526
\(899\) −21.0000 −0.700389
\(900\) −4.00000 −0.133333
\(901\) 40.0000 1.33259
\(902\) 0 0
\(903\) 24.0000 0.798670
\(904\) 0 0
\(905\) −2.00000 −0.0664822
\(906\) −2.00000 −0.0664455
\(907\) 46.0000 1.52740 0.763702 0.645568i \(-0.223379\pi\)
0.763702 + 0.645568i \(0.223379\pi\)
\(908\) 12.0000 0.398234
\(909\) −20.0000 −0.663358
\(910\) 36.0000 1.19339
\(911\) 8.00000 0.265052 0.132526 0.991180i \(-0.457691\pi\)
0.132526 + 0.991180i \(0.457691\pi\)
\(912\) 4.00000 0.132453
\(913\) 0 0
\(914\) −16.0000 −0.529233
\(915\) 0 0
\(916\) 12.0000 0.396491
\(917\) 54.0000 1.78324
\(918\) 40.0000 1.32020
\(919\) 34.0000 1.12156 0.560778 0.827966i \(-0.310502\pi\)
0.560778 + 0.827966i \(0.310502\pi\)
\(920\) 0 0
\(921\) −4.00000 −0.131804
\(922\) −10.0000 −0.329332
\(923\) −72.0000 −2.36991
\(924\) 0 0
\(925\) −2.00000 −0.0657596
\(926\) 40.0000 1.31448
\(927\) −12.0000 −0.394132
\(928\) 24.0000 0.787839
\(929\) 8.00000 0.262471 0.131236 0.991351i \(-0.458106\pi\)
0.131236 + 0.991351i \(0.458106\pi\)
\(930\) 14.0000 0.459078
\(931\) −2.00000 −0.0655474
\(932\) 36.0000 1.17922
\(933\) −17.0000 −0.556555
\(934\) −72.0000 −2.35591
\(935\) 0 0
\(936\) 0 0
\(937\) 38.0000 1.24141 0.620703 0.784046i \(-0.286847\pi\)
0.620703 + 0.784046i \(0.286847\pi\)
\(938\) −24.0000 −0.783628
\(939\) −6.00000 −0.195803
\(940\) −16.0000 −0.521862
\(941\) 16.0000 0.521585 0.260793 0.965395i \(-0.416016\pi\)
0.260793 + 0.965395i \(0.416016\pi\)
\(942\) −26.0000 −0.847126
\(943\) −24.0000 −0.781548
\(944\) 16.0000 0.520756
\(945\) −15.0000 −0.487950
\(946\) 0 0
\(947\) 20.0000 0.649913 0.324956 0.945729i \(-0.394650\pi\)
0.324956 + 0.945729i \(0.394650\pi\)
\(948\) 8.00000 0.259828
\(949\) −42.0000 −1.36338
\(950\) −2.00000 −0.0648886
\(951\) 33.0000 1.07010
\(952\) 0 0
\(953\) −14.0000 −0.453504 −0.226752 0.973952i \(-0.572811\pi\)
−0.226752 + 0.973952i \(0.572811\pi\)
\(954\) 40.0000 1.29505
\(955\) 13.0000 0.420670
\(956\) 26.0000 0.840900
\(957\) 0 0
\(958\) 20.0000 0.646171
\(959\) 36.0000 1.16250
\(960\) −8.00000 −0.258199
\(961\) 18.0000 0.580645
\(962\) −24.0000 −0.773791
\(963\) 34.0000 1.09563
\(964\) 34.0000 1.09507
\(965\) 4.00000 0.128765
\(966\) −18.0000 −0.579141
\(967\) 40.0000 1.28631 0.643157 0.765735i \(-0.277624\pi\)
0.643157 + 0.765735i \(0.277624\pi\)
\(968\) 0 0
\(969\) 4.00000 0.128499
\(970\) 32.0000 1.02746
\(971\) −42.0000 −1.34784 −0.673922 0.738802i \(-0.735392\pi\)
−0.673922 + 0.738802i \(0.735392\pi\)
\(972\) 32.0000 1.02640
\(973\) 9.00000 0.288527
\(974\) −16.0000 −0.512673
\(975\) 6.00000 0.192154
\(976\) 0 0
\(977\) −37.0000 −1.18373 −0.591867 0.806035i \(-0.701609\pi\)
−0.591867 + 0.806035i \(0.701609\pi\)
\(978\) −10.0000 −0.319765
\(979\) 0 0
\(980\) 4.00000 0.127775
\(981\) 12.0000 0.383131
\(982\) 30.0000 0.957338
\(983\) 39.0000 1.24391 0.621953 0.783054i \(-0.286339\pi\)
0.621953 + 0.783054i \(0.286339\pi\)
\(984\) 0 0
\(985\) 9.00000 0.286764
\(986\) 24.0000 0.764316
\(987\) −24.0000 −0.763928
\(988\) −12.0000 −0.381771
\(989\) −24.0000 −0.763156
\(990\) 0 0
\(991\) 11.0000 0.349427 0.174713 0.984619i \(-0.444100\pi\)
0.174713 + 0.984619i \(0.444100\pi\)
\(992\) −56.0000 −1.77800
\(993\) −4.00000 −0.126936
\(994\) −72.0000 −2.28370
\(995\) −20.0000 −0.634043
\(996\) 24.0000 0.760469
\(997\) −56.0000 −1.77354 −0.886769 0.462213i \(-0.847056\pi\)
−0.886769 + 0.462213i \(0.847056\pi\)
\(998\) −48.0000 −1.51941
\(999\) 10.0000 0.316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 755.2.a.e.1.1 1
3.2 odd 2 6795.2.a.e.1.1 1
5.4 even 2 3775.2.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
755.2.a.e.1.1 1 1.1 even 1 trivial
3775.2.a.b.1.1 1 5.4 even 2
6795.2.a.e.1.1 1 3.2 odd 2