Properties

Label 2-7350-1.1-c1-0-28
Degree $2$
Conductor $7350$
Sign $1$
Analytic cond. $58.6900$
Root an. cond. $7.66094$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s − 8-s + 9-s + 2·11-s + 12-s − 13-s + 16-s + 3·17-s − 18-s − 2·22-s + 23-s − 24-s + 26-s + 27-s − 5·29-s − 7·31-s − 32-s + 2·33-s − 3·34-s + 36-s + 2·37-s − 39-s − 7·41-s + 11·43-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.603·11-s + 0.288·12-s − 0.277·13-s + 1/4·16-s + 0.727·17-s − 0.235·18-s − 0.426·22-s + 0.208·23-s − 0.204·24-s + 0.196·26-s + 0.192·27-s − 0.928·29-s − 1.25·31-s − 0.176·32-s + 0.348·33-s − 0.514·34-s + 1/6·36-s + 0.328·37-s − 0.160·39-s − 1.09·41-s + 1.67·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7350\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(58.6900\)
Root analytic conductor: \(7.66094\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7350,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.877819265\)
\(L(\frac12)\) \(\approx\) \(1.877819265\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
good11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 7 T + p T^{2} \) 1.41.h
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 - 3 T + p T^{2} \) 1.61.ad
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 11 T + p T^{2} \) 1.83.l
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.953715794168135685691444613385, −7.29463165599210752963395910201, −6.83314880184316849750110457530, −5.84949340099089637536000881686, −5.23310040607092510124728352755, −4.06679881044300376346327607010, −3.52034780939110352871062506538, −2.54181361721711325909080024430, −1.77270023056846991043255622018, −0.75991560168984159160120946243, 0.75991560168984159160120946243, 1.77270023056846991043255622018, 2.54181361721711325909080024430, 3.52034780939110352871062506538, 4.06679881044300376346327607010, 5.23310040607092510124728352755, 5.84949340099089637536000881686, 6.83314880184316849750110457530, 7.29463165599210752963395910201, 7.953715794168135685691444613385

Graph of the $Z$-function along the critical line