| L(s) = 1 | − 2·3-s + 4-s − 6·7-s + 3·9-s − 2·12-s − 3·16-s − 3·17-s − 4·19-s + 12·21-s − 12·23-s + 7·25-s − 10·27-s − 6·28-s + 4·31-s + 3·36-s + 37-s − 6·41-s − 18·43-s − 12·47-s + 6·48-s + 17·49-s + 6·51-s − 3·53-s + 8·57-s − 6·59-s + 7·61-s − 18·63-s + ⋯ |
| L(s) = 1 | − 1.15·3-s + 1/2·4-s − 2.26·7-s + 9-s − 0.577·12-s − 3/4·16-s − 0.727·17-s − 0.917·19-s + 2.61·21-s − 2.50·23-s + 7/5·25-s − 1.92·27-s − 1.13·28-s + 0.718·31-s + 1/2·36-s + 0.164·37-s − 0.937·41-s − 2.74·43-s − 1.75·47-s + 0.866·48-s + 17/7·49-s + 0.840·51-s − 0.412·53-s + 1.05·57-s − 0.781·59-s + 0.896·61-s − 2.26·63-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 537289 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 537289 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.14164276421527542914407547445, −10.01959245468582274409750616730, −9.519511829994809298905453513237, −8.985357687180411852310610857588, −8.444467231592149303343311819409, −8.079297352509640607070769342372, −7.18363327465562344855308625499, −6.99927751879199718178472963701, −6.41468032191670716898618560490, −6.21552850004090180794858495756, −6.15377451087112072461403958677, −5.28901166069917357520511443186, −4.64066617713573144018594578558, −4.29650927196788135828603443371, −3.45809855715132784665238421942, −3.21909493112272276546650029755, −2.26345029351565778769938561634, −1.73007936420359588716063737553, 0, 0,
1.73007936420359588716063737553, 2.26345029351565778769938561634, 3.21909493112272276546650029755, 3.45809855715132784665238421942, 4.29650927196788135828603443371, 4.64066617713573144018594578558, 5.28901166069917357520511443186, 6.15377451087112072461403958677, 6.21552850004090180794858495756, 6.41468032191670716898618560490, 6.99927751879199718178472963701, 7.18363327465562344855308625499, 8.079297352509640607070769342372, 8.444467231592149303343311819409, 8.985357687180411852310610857588, 9.519511829994809298905453513237, 10.01959245468582274409750616730, 10.14164276421527542914407547445