L-function data
Analytic rank: | \(2\) (upper bound) | ||||||||||||||||||||||||||||||||||||
Mordell-Weil rank: | \(2\) | ||||||||||||||||||||||||||||||||||||
Bad L-factors: |
| ||||||||||||||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||||||||||||||
See L-function page for more information |
Sato-Tate group
\(\mathrm{ST} =\) $E_6$, \(\quad \mathrm{ST}^0 = \mathrm{SU}(2)\)
Decomposition of the Jacobian
Splits over the number field \(\Q (b)\) with defining polynomial:
\(x^{6} - x^{5} - 305 x^{4} - 3190 x^{3} - 13345 x^{2} - 24521 x - 15791\)
Decomposes up to isogeny as the square of the elliptic curve isogeny class:
\(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
\(g_4 = -\frac{195527}{768} b^{5} + \frac{106703}{48} b^{4} + \frac{15517437}{256} b^{3} + \frac{262259057}{768} b^{2} + \frac{70172353}{96} b + \frac{392766647}{768}\)
\(g_6 = \frac{148933139}{144} b^{5} - \frac{20301225907}{2304} b^{4} - \frac{191390106469}{768} b^{3} - \frac{410462090611}{288} b^{2} - \frac{2367815638657}{768} b - \frac{5002537483207}{2304}\)
Conductor norm: 1
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism algebra over \(\Q\):
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-3}) \) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\C\) |
Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a)\) with defining polynomial \(x^{6} - x^{5} - 305 x^{4} - 3190 x^{3} - 13345 x^{2} - 24521 x - 15791\)
Endomorphism algebra over \(\overline{\Q}\):
\(\End (J_{\overline{\Q}}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
\(\End (J_{\overline{\Q}}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |
More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.
Genus 2 curves in isogeny class 537289.c
Label | Equation |
---|---|
537289.c.537289.1 | \(y^2 + (x^2 + x)y = x^6 - 2x^5 - 3x^4 + 5x^3 + 2x^2 - 4x + 1\) |