Properties

Label 537289.c.537289.1
Conductor $537289$
Discriminant $-537289$
Mordell-Weil group \(\Z \oplus \Z\)
Sato-Tate group $E_6$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\mathrm{M}_2(\R)\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathrm{M}_2(\Q)\)
\(\End(J) \otimes \Q\) \(\mathsf{CM}\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^2 + x)y = x^6 - 2x^5 - 3x^4 + 5x^3 + 2x^2 - 4x + 1$ (homogenize, simplify)
$y^2 + (x^2z + xz^2)y = x^6 - 2x^5z - 3x^4z^2 + 5x^3z^3 + 2x^2z^4 - 4xz^5 + z^6$ (dehomogenize, simplify)
$y^2 = 4x^6 - 8x^5 - 11x^4 + 22x^3 + 9x^2 - 16x + 4$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([1, -4, 2, 5, -3, -2, 1]), R([0, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![1, -4, 2, 5, -3, -2, 1], R![0, 1, 1]);
 
sage: X = HyperellipticCurve(R([4, -16, 9, 22, -11, -8, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(537289\) \(=\) \( 733^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-537289\) \(=\) \( - 733^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(2884\) \(=\)  \( 2^{2} \cdot 7 \cdot 103 \)
\( I_4 \)  \(=\) \(572473\) \(=\)  \( 11 \cdot 71 \cdot 733 \)
\( I_6 \)  \(=\) \(406587037\) \(=\)  \( 41 \cdot 83 \cdot 163 \cdot 733 \)
\( I_{10} \)  \(=\) \(-68772992\) \(=\)  \( - 2^{7} \cdot 733^{2} \)
\( J_2 \)  \(=\) \(721\) \(=\)  \( 7 \cdot 103 \)
\( J_4 \)  \(=\) \(-2193\) \(=\)  \( - 3 \cdot 17 \cdot 43 \)
\( J_6 \)  \(=\) \(-2203\) \(=\)  \( -2203 \)
\( J_8 \)  \(=\) \(-1599403\) \(=\)  \( - 13 \cdot 123031 \)
\( J_{10} \)  \(=\) \(-537289\) \(=\)  \( - 733^{2} \)
\( g_1 \)  \(=\) \(-194839193667601/537289\)
\( g_2 \)  \(=\) \(821948156673/537289\)
\( g_3 \)  \(=\) \(1145209723/537289\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_6$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $D_6$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((1 : 0 : 1)\) \((1 : -2 : 1)\)
\((-16 : 4441 : 15)\) \((-16 : -4681 : 15)\) \((15 : -6134 : 31)\) \((31 : -7095 : 16)\) \((15 : -15256 : 31)\) \((31 : -16217 : 16)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((1 : 0 : 1)\) \((1 : -2 : 1)\)
\((-16 : 4441 : 15)\) \((-16 : -4681 : 15)\) \((15 : -6134 : 31)\) \((31 : -7095 : 16)\) \((15 : -15256 : 31)\) \((31 : -16217 : 16)\)
Known points
\((1 : -2 : 0)\) \((1 : 2 : 0)\) \((0 : -2 : 1)\) \((0 : 2 : 1)\) \((1 : -2 : 1)\) \((1 : 2 : 1)\)
\((-16 : -9122 : 15)\) \((-16 : 9122 : 15)\) \((15 : -9122 : 31)\) \((15 : 9122 : 31)\) \((31 : -9122 : 16)\) \((31 : 9122 : 16)\)

magma: [C![-16,-4681,15],C![-16,4441,15],C![0,-1,1],C![0,1,1],C![1,-2,1],C![1,-1,0],C![1,0,1],C![1,1,0],C![15,-15256,31],C![15,-6134,31],C![31,-16217,16],C![31,-7095,16]]; // minimal model
 
magma: [C![-16,-9122,15],C![-16,9122,15],C![0,-2,1],C![0,2,1],C![1,-2,1],C![1,-2,0],C![1,2,1],C![1,2,0],C![15,-9122,31],C![15,9122,31],C![31,-9122,16],C![31,9122,16]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((1 : -2 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 3z^3\) \(0.509372\) \(\infty\)
\((0 : 1 : 1) + (1 : -2 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-3xz^2 + z^3\) \(0.509372\) \(\infty\)
Generator $D_0$ Height Order
\((1 : -2 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 3z^3\) \(0.509372\) \(\infty\)
\((0 : 1 : 1) + (1 : -2 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-3xz^2 + z^3\) \(0.509372\) \(\infty\)
Generator $D_0$ Height Order
\((1 : -2 : 1) - (1 : -2 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(2x^3 + x^2z + xz^2 - 6z^3\) \(0.509372\) \(\infty\)
\((0 : 2 : 1) + (1 : -2 : 1) - (1 : -2 : 0) - (1 : 2 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(x^2z - 5xz^2 + 2z^3\) \(0.509372\) \(\infty\)

2-torsion field: 6.0.34386496.2

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(2\)
Mordell-Weil rank: \(2\)
2-Selmer rank:\(2\)
Regulator: \( 0.194595 \)
Real period: \( 19.30717 \)
Tamagawa product: \( 1 \)
Torsion order:\( 1 \)
Leading coefficient: \( 3.757081 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(733\) \(2\) \(2\) \(1\) \(1 + 50 T + 733 T^{2}\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.40.3 no
\(3\) 3.480.12 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $E_6$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over the number field \(\Q (b)\) with defining polynomial:
  \(x^{6} - x^{5} - 305 x^{4} - 3190 x^{3} - 13345 x^{2} - 24521 x - 15791\)

Decomposes up to isogeny as the square of the elliptic curve isogeny class:
  \(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
  \(g_4 = -\frac{195527}{768} b^{5} + \frac{106703}{48} b^{4} + \frac{15517437}{256} b^{3} + \frac{262259057}{768} b^{2} + \frac{70172353}{96} b + \frac{392766647}{768}\)
  \(g_6 = \frac{148933139}{144} b^{5} - \frac{20301225907}{2304} b^{4} - \frac{191390106469}{768} b^{3} - \frac{410462090611}{288} b^{2} - \frac{2367815638657}{768} b - \frac{5002537483207}{2304}\)
   Conductor norm: 1

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\C\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a)\) with defining polynomial \(x^{6} - x^{5} - 305 x^{4} - 3190 x^{3} - 13345 x^{2} - 24521 x - 15791\)

Not of \(\GL_2\)-type over \(\overline{\Q}\)

Endomorphism ring over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}})\)\(\simeq\)an Eichler order of index \(3\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\)
\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\mathrm{M}_2(\)\(\Q\)\()\)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\mathrm{M}_2 (\R)\)

Remainder of the endomorphism lattice by field

Over subfield \(F \simeq \) \(\Q(\sqrt{733}) \) with generator \(\frac{1}{8} a^{5} - \frac{5}{8} a^{4} - \frac{71}{2} a^{3} - \frac{2063}{8} a^{2} - \frac{5333}{8} a - \frac{1073}{2}\) with minimal polynomial \(x^{2} - x - 183\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_3$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 3.3.537289.1 with generator \(-\frac{1}{9} a^{5} + \frac{5}{9} a^{4} + \frac{95}{3} a^{3} + \frac{2050}{9} a^{2} + \frac{1718}{3} a + \frac{3905}{9}\) with minimal polynomial \(x^{3} - x^{2} - 244 x - 1276\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_2$
  Of \(\GL_2\)-type, simple

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);