Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 7 x - 12 x^{2} - 427 x^{3} + 3721 x^{4}$ |
Frobenius angles: | $\pm0.0187571618436$, $\pm0.685423828510$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{65})\) |
Galois group: | $C_2^2$ |
Jacobians: | $20$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3276$ | $13575744$ | $51095889936$ | $191678047352064$ | $713307078931031676$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $55$ | $3649$ | $225106$ | $13843729$ | $844553875$ | $51519522598$ | $3142742442895$ | $191707289770369$ | $11694145719695866$ | $713342911773740329$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):
- $y^2=38 x^6+17 x^5+25 x^4+44 x^3+18 x^2+53 x+53$
- $y^2=56 x^6+45 x^5+38 x^4+13 x^3+19 x^2+7 x+24$
- $y^2=43 x^6+39 x^5+58 x^4+24 x^3+48 x^2+28 x+29$
- $y^2=59 x^6+10 x^5+31 x^4+56 x^3+45 x^2+37 x+37$
- $y^2=60 x^6+x^5+39 x^4+52 x^3+6 x^2+20 x+8$
- $y^2=x^6+2 x^3+14$
- $y^2=10 x^6+51 x^5+47 x^4+25 x^3+42 x^2+29 x+14$
- $y^2=14 x^6+60 x^5+7 x^4+57 x^3+30 x^2+58 x+53$
- $y^2=27 x^6+48 x^5+25 x^4+29 x^3+56 x^2+51 x+58$
- $y^2=16 x^6+56 x^5+56 x^4+37 x^3+14 x^2+22 x+44$
- $y^2=7 x^6+57 x^4+15 x^3+6 x^2+30 x+30$
- $y^2=30 x^6+49 x^5+3 x^4+45 x^3+38 x^2+12 x+35$
- $y^2=x^6+x^3+5$
- $y^2=x^6+27 x^5+45 x^4+25 x^3+15 x^2+10 x+54$
- $y^2=39 x^6+27 x^5+7 x^4+25 x^3+8 x^2+8 x+14$
- $y^2=38 x^6+48 x^5+x^4+46 x^3+36 x^2+17 x+44$
- $y^2=44 x^6+56 x^5+60 x^4+45 x^3+8 x^2+48 x+10$
- $y^2=29 x^6+39 x^5+34 x^4+44 x^3+33 x^2+14 x+37$
- $y^2=4 x^6+58 x^5+58 x^4+5 x^3+50 x^2+54 x+28$
- $y^2=14 x^6+16 x^5+38 x^4+27 x^3+23 x^2+48 x+30$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61^{3}}$.
Endomorphism algebra over $\F_{61}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{65})\). |
The base change of $A$ to $\F_{61^{3}}$ is 1.226981.abkc 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-195}) \)$)$ |
Base change
This is a primitive isogeny class.