Properties

Label 733.2.e.a.426.1
Level $733$
Weight $2$
Character 733.426
Analytic conductor $5.853$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [733,2,Mod(308,733)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("733.308"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(733, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 733 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 733.e (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.85303446816\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 426.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 733.426
Dual form 733.2.e.a.308.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205i q^{2} +(-1.00000 + 1.73205i) q^{3} -1.00000 q^{4} -1.73205i q^{5} +(3.00000 + 1.73205i) q^{6} +(-3.00000 - 1.73205i) q^{7} -1.73205i q^{8} +(-0.500000 - 0.866025i) q^{9} -3.00000 q^{10} +3.46410i q^{11} +(1.00000 - 1.73205i) q^{12} +(-3.00000 + 5.19615i) q^{14} +(3.00000 + 1.73205i) q^{15} -5.00000 q^{16} +(-1.50000 + 2.59808i) q^{17} +(-1.50000 + 0.866025i) q^{18} -2.00000 q^{19} +1.73205i q^{20} +(6.00000 - 3.46410i) q^{21} +6.00000 q^{22} +(-6.00000 - 3.46410i) q^{23} +(3.00000 + 1.73205i) q^{24} +2.00000 q^{25} -4.00000 q^{27} +(3.00000 + 1.73205i) q^{28} +(3.00000 - 5.19615i) q^{30} +(2.00000 + 3.46410i) q^{31} +5.19615i q^{32} +(-6.00000 - 3.46410i) q^{33} +(4.50000 + 2.59808i) q^{34} +(-3.00000 + 5.19615i) q^{35} +(0.500000 + 0.866025i) q^{36} +(0.500000 - 0.866025i) q^{37} +3.46410i q^{38} -3.00000 q^{40} +(-3.00000 + 5.19615i) q^{41} +(-6.00000 - 10.3923i) q^{42} +(-9.00000 + 5.19615i) q^{43} -3.46410i q^{44} +(-1.50000 + 0.866025i) q^{45} +(-6.00000 + 10.3923i) q^{46} -6.00000 q^{47} +(5.00000 - 8.66025i) q^{48} +(2.50000 + 4.33013i) q^{49} -3.46410i q^{50} +(-3.00000 - 5.19615i) q^{51} +(-1.50000 + 2.59808i) q^{53} +6.92820i q^{54} +6.00000 q^{55} +(-3.00000 + 5.19615i) q^{56} +(2.00000 - 3.46410i) q^{57} +(-3.00000 - 5.19615i) q^{59} +(-3.00000 - 1.73205i) q^{60} +(3.50000 + 6.06218i) q^{61} +(6.00000 - 3.46410i) q^{62} +3.46410i q^{63} -1.00000 q^{64} +(-6.00000 + 10.3923i) q^{66} +6.92820i q^{67} +(1.50000 - 2.59808i) q^{68} +(12.0000 - 6.92820i) q^{69} +(9.00000 + 5.19615i) q^{70} +(-3.00000 - 1.73205i) q^{71} +(-1.50000 + 0.866025i) q^{72} +(-7.00000 + 12.1244i) q^{73} +(-1.50000 - 0.866025i) q^{74} +(-2.00000 + 3.46410i) q^{75} +2.00000 q^{76} +(6.00000 - 10.3923i) q^{77} +(8.00000 - 13.8564i) q^{79} +8.66025i q^{80} +(5.50000 - 9.52628i) q^{81} +(9.00000 + 5.19615i) q^{82} +(-6.00000 - 10.3923i) q^{83} +(-6.00000 + 3.46410i) q^{84} +(4.50000 + 2.59808i) q^{85} +(9.00000 + 15.5885i) q^{86} +6.00000 q^{88} +(-4.50000 - 7.79423i) q^{89} +(1.50000 + 2.59808i) q^{90} +(6.00000 + 3.46410i) q^{92} -8.00000 q^{93} +10.3923i q^{94} +3.46410i q^{95} +(-9.00000 - 5.19615i) q^{96} +(-6.50000 - 11.2583i) q^{97} +(7.50000 - 4.33013i) q^{98} +(3.00000 - 1.73205i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 2 q^{4} + 6 q^{6} - 6 q^{7} - q^{9} - 6 q^{10} + 2 q^{12} - 6 q^{14} + 6 q^{15} - 10 q^{16} - 3 q^{17} - 3 q^{18} - 4 q^{19} + 12 q^{21} + 12 q^{22} - 12 q^{23} + 6 q^{24} + 4 q^{25} - 8 q^{27}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/733\mathbb{Z}\right)^\times\).

\(n\) \(6\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.73205i 1.22474i −0.790569 0.612372i \(-0.790215\pi\)
0.790569 0.612372i \(-0.209785\pi\)
\(3\) −1.00000 + 1.73205i −0.577350 + 1.00000i 0.418432 + 0.908248i \(0.362580\pi\)
−0.995782 + 0.0917517i \(0.970753\pi\)
\(4\) −1.00000 −0.500000
\(5\) 1.73205i 0.774597i −0.921954 0.387298i \(-0.873408\pi\)
0.921954 0.387298i \(-0.126592\pi\)
\(6\) 3.00000 + 1.73205i 1.22474 + 0.707107i
\(7\) −3.00000 1.73205i −1.13389 0.654654i −0.188982 0.981981i \(-0.560519\pi\)
−0.944911 + 0.327327i \(0.893852\pi\)
\(8\) 1.73205i 0.612372i
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) −3.00000 −0.948683
\(11\) 3.46410i 1.04447i 0.852803 + 0.522233i \(0.174901\pi\)
−0.852803 + 0.522233i \(0.825099\pi\)
\(12\) 1.00000 1.73205i 0.288675 0.500000i
\(13\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(14\) −3.00000 + 5.19615i −0.801784 + 1.38873i
\(15\) 3.00000 + 1.73205i 0.774597 + 0.447214i
\(16\) −5.00000 −1.25000
\(17\) −1.50000 + 2.59808i −0.363803 + 0.630126i −0.988583 0.150675i \(-0.951855\pi\)
0.624780 + 0.780801i \(0.285189\pi\)
\(18\) −1.50000 + 0.866025i −0.353553 + 0.204124i
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 1.73205i 0.387298i
\(21\) 6.00000 3.46410i 1.30931 0.755929i
\(22\) 6.00000 1.27920
\(23\) −6.00000 3.46410i −1.25109 0.722315i −0.279761 0.960070i \(-0.590255\pi\)
−0.971325 + 0.237754i \(0.923589\pi\)
\(24\) 3.00000 + 1.73205i 0.612372 + 0.353553i
\(25\) 2.00000 0.400000
\(26\) 0 0
\(27\) −4.00000 −0.769800
\(28\) 3.00000 + 1.73205i 0.566947 + 0.327327i
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 3.00000 5.19615i 0.547723 0.948683i
\(31\) 2.00000 + 3.46410i 0.359211 + 0.622171i 0.987829 0.155543i \(-0.0497126\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) 5.19615i 0.918559i
\(33\) −6.00000 3.46410i −1.04447 0.603023i
\(34\) 4.50000 + 2.59808i 0.771744 + 0.445566i
\(35\) −3.00000 + 5.19615i −0.507093 + 0.878310i
\(36\) 0.500000 + 0.866025i 0.0833333 + 0.144338i
\(37\) 0.500000 0.866025i 0.0821995 0.142374i −0.821995 0.569495i \(-0.807139\pi\)
0.904194 + 0.427121i \(0.140472\pi\)
\(38\) 3.46410i 0.561951i
\(39\) 0 0
\(40\) −3.00000 −0.474342
\(41\) −3.00000 + 5.19615i −0.468521 + 0.811503i −0.999353 0.0359748i \(-0.988546\pi\)
0.530831 + 0.847477i \(0.321880\pi\)
\(42\) −6.00000 10.3923i −0.925820 1.60357i
\(43\) −9.00000 + 5.19615i −1.37249 + 0.792406i −0.991241 0.132068i \(-0.957838\pi\)
−0.381246 + 0.924473i \(0.624505\pi\)
\(44\) 3.46410i 0.522233i
\(45\) −1.50000 + 0.866025i −0.223607 + 0.129099i
\(46\) −6.00000 + 10.3923i −0.884652 + 1.53226i
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 5.00000 8.66025i 0.721688 1.25000i
\(49\) 2.50000 + 4.33013i 0.357143 + 0.618590i
\(50\) 3.46410i 0.489898i
\(51\) −3.00000 5.19615i −0.420084 0.727607i
\(52\) 0 0
\(53\) −1.50000 + 2.59808i −0.206041 + 0.356873i −0.950464 0.310835i \(-0.899391\pi\)
0.744423 + 0.667708i \(0.232725\pi\)
\(54\) 6.92820i 0.942809i
\(55\) 6.00000 0.809040
\(56\) −3.00000 + 5.19615i −0.400892 + 0.694365i
\(57\) 2.00000 3.46410i 0.264906 0.458831i
\(58\) 0 0
\(59\) −3.00000 5.19615i −0.390567 0.676481i 0.601958 0.798528i \(-0.294388\pi\)
−0.992524 + 0.122047i \(0.961054\pi\)
\(60\) −3.00000 1.73205i −0.387298 0.223607i
\(61\) 3.50000 + 6.06218i 0.448129 + 0.776182i 0.998264 0.0588933i \(-0.0187572\pi\)
−0.550135 + 0.835076i \(0.685424\pi\)
\(62\) 6.00000 3.46410i 0.762001 0.439941i
\(63\) 3.46410i 0.436436i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −6.00000 + 10.3923i −0.738549 + 1.27920i
\(67\) 6.92820i 0.846415i 0.906033 + 0.423207i \(0.139096\pi\)
−0.906033 + 0.423207i \(0.860904\pi\)
\(68\) 1.50000 2.59808i 0.181902 0.315063i
\(69\) 12.0000 6.92820i 1.44463 0.834058i
\(70\) 9.00000 + 5.19615i 1.07571 + 0.621059i
\(71\) −3.00000 1.73205i −0.356034 0.205557i 0.311305 0.950310i \(-0.399234\pi\)
−0.667340 + 0.744753i \(0.732567\pi\)
\(72\) −1.50000 + 0.866025i −0.176777 + 0.102062i
\(73\) −7.00000 + 12.1244i −0.819288 + 1.41905i 0.0869195 + 0.996215i \(0.472298\pi\)
−0.906208 + 0.422833i \(0.861036\pi\)
\(74\) −1.50000 0.866025i −0.174371 0.100673i
\(75\) −2.00000 + 3.46410i −0.230940 + 0.400000i
\(76\) 2.00000 0.229416
\(77\) 6.00000 10.3923i 0.683763 1.18431i
\(78\) 0 0
\(79\) 8.00000 13.8564i 0.900070 1.55897i 0.0726692 0.997356i \(-0.476848\pi\)
0.827401 0.561611i \(-0.189818\pi\)
\(80\) 8.66025i 0.968246i
\(81\) 5.50000 9.52628i 0.611111 1.05848i
\(82\) 9.00000 + 5.19615i 0.993884 + 0.573819i
\(83\) −6.00000 10.3923i −0.658586 1.14070i −0.980982 0.194099i \(-0.937822\pi\)
0.322396 0.946605i \(-0.395512\pi\)
\(84\) −6.00000 + 3.46410i −0.654654 + 0.377964i
\(85\) 4.50000 + 2.59808i 0.488094 + 0.281801i
\(86\) 9.00000 + 15.5885i 0.970495 + 1.68095i
\(87\) 0 0
\(88\) 6.00000 0.639602
\(89\) −4.50000 7.79423i −0.476999 0.826187i 0.522654 0.852545i \(-0.324942\pi\)
−0.999653 + 0.0263586i \(0.991609\pi\)
\(90\) 1.50000 + 2.59808i 0.158114 + 0.273861i
\(91\) 0 0
\(92\) 6.00000 + 3.46410i 0.625543 + 0.361158i
\(93\) −8.00000 −0.829561
\(94\) 10.3923i 1.07188i
\(95\) 3.46410i 0.355409i
\(96\) −9.00000 5.19615i −0.918559 0.530330i
\(97\) −6.50000 11.2583i −0.659975 1.14311i −0.980622 0.195911i \(-0.937234\pi\)
0.320647 0.947199i \(-0.396100\pi\)
\(98\) 7.50000 4.33013i 0.757614 0.437409i
\(99\) 3.00000 1.73205i 0.301511 0.174078i
\(100\) −2.00000 −0.200000
\(101\) 10.5000 + 6.06218i 1.04479 + 0.603209i 0.921186 0.389123i \(-0.127222\pi\)
0.123603 + 0.992332i \(0.460555\pi\)
\(102\) −9.00000 + 5.19615i −0.891133 + 0.514496i
\(103\) 6.92820i 0.682656i 0.939944 + 0.341328i \(0.110877\pi\)
−0.939944 + 0.341328i \(0.889123\pi\)
\(104\) 0 0
\(105\) −6.00000 10.3923i −0.585540 1.01419i
\(106\) 4.50000 + 2.59808i 0.437079 + 0.252347i
\(107\) 12.0000 6.92820i 1.16008 0.669775i 0.208760 0.977967i \(-0.433057\pi\)
0.951324 + 0.308192i \(0.0997240\pi\)
\(108\) 4.00000 0.384900
\(109\) 8.66025i 0.829502i −0.909935 0.414751i \(-0.863869\pi\)
0.909935 0.414751i \(-0.136131\pi\)
\(110\) 10.3923i 0.990867i
\(111\) 1.00000 + 1.73205i 0.0949158 + 0.164399i
\(112\) 15.0000 + 8.66025i 1.41737 + 0.818317i
\(113\) 12.0000 6.92820i 1.12887 0.651751i 0.185216 0.982698i \(-0.440702\pi\)
0.943649 + 0.330947i \(0.107368\pi\)
\(114\) −6.00000 3.46410i −0.561951 0.324443i
\(115\) −6.00000 + 10.3923i −0.559503 + 0.969087i
\(116\) 0 0
\(117\) 0 0
\(118\) −9.00000 + 5.19615i −0.828517 + 0.478345i
\(119\) 9.00000 5.19615i 0.825029 0.476331i
\(120\) 3.00000 5.19615i 0.273861 0.474342i
\(121\) −1.00000 −0.0909091
\(122\) 10.5000 6.06218i 0.950625 0.548844i
\(123\) −6.00000 10.3923i −0.541002 0.937043i
\(124\) −2.00000 3.46410i −0.179605 0.311086i
\(125\) 12.1244i 1.08444i
\(126\) 6.00000 0.534522
\(127\) −10.0000 17.3205i −0.887357 1.53695i −0.842989 0.537931i \(-0.819206\pi\)
−0.0443678 0.999015i \(-0.514127\pi\)
\(128\) 12.1244i 1.07165i
\(129\) 20.7846i 1.82998i
\(130\) 0 0
\(131\) 13.8564i 1.21064i −0.795982 0.605320i \(-0.793045\pi\)
0.795982 0.605320i \(-0.206955\pi\)
\(132\) 6.00000 + 3.46410i 0.522233 + 0.301511i
\(133\) 6.00000 + 3.46410i 0.520266 + 0.300376i
\(134\) 12.0000 1.03664
\(135\) 6.92820i 0.596285i
\(136\) 4.50000 + 2.59808i 0.385872 + 0.222783i
\(137\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(138\) −12.0000 20.7846i −1.02151 1.76930i
\(139\) −2.00000 −0.169638 −0.0848189 0.996396i \(-0.527031\pi\)
−0.0848189 + 0.996396i \(0.527031\pi\)
\(140\) 3.00000 5.19615i 0.253546 0.439155i
\(141\) 6.00000 10.3923i 0.505291 0.875190i
\(142\) −3.00000 + 5.19615i −0.251754 + 0.436051i
\(143\) 0 0
\(144\) 2.50000 + 4.33013i 0.208333 + 0.360844i
\(145\) 0 0
\(146\) 21.0000 + 12.1244i 1.73797 + 1.00342i
\(147\) −10.0000 −0.824786
\(148\) −0.500000 + 0.866025i −0.0410997 + 0.0711868i
\(149\) −4.50000 2.59808i −0.368654 0.212843i 0.304216 0.952603i \(-0.401606\pi\)
−0.672870 + 0.739760i \(0.734939\pi\)
\(150\) 6.00000 + 3.46410i 0.489898 + 0.282843i
\(151\) 13.8564i 1.12762i 0.825905 + 0.563809i \(0.190665\pi\)
−0.825905 + 0.563809i \(0.809335\pi\)
\(152\) 3.46410i 0.280976i
\(153\) 3.00000 0.242536
\(154\) −18.0000 10.3923i −1.45048 0.837436i
\(155\) 6.00000 3.46410i 0.481932 0.278243i
\(156\) 0 0
\(157\) 7.00000 + 12.1244i 0.558661 + 0.967629i 0.997609 + 0.0691164i \(0.0220180\pi\)
−0.438948 + 0.898513i \(0.644649\pi\)
\(158\) −24.0000 13.8564i −1.90934 1.10236i
\(159\) −3.00000 5.19615i −0.237915 0.412082i
\(160\) 9.00000 0.711512
\(161\) 12.0000 + 20.7846i 0.945732 + 1.63806i
\(162\) −16.5000 9.52628i −1.29636 0.748455i
\(163\) −1.00000 + 1.73205i −0.0783260 + 0.135665i −0.902528 0.430632i \(-0.858291\pi\)
0.824202 + 0.566296i \(0.191624\pi\)
\(164\) 3.00000 5.19615i 0.234261 0.405751i
\(165\) −6.00000 + 10.3923i −0.467099 + 0.809040i
\(166\) −18.0000 + 10.3923i −1.39707 + 0.806599i
\(167\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(168\) −6.00000 10.3923i −0.462910 0.801784i
\(169\) −6.50000 + 11.2583i −0.500000 + 0.866025i
\(170\) 4.50000 7.79423i 0.345134 0.597790i
\(171\) 1.00000 + 1.73205i 0.0764719 + 0.132453i
\(172\) 9.00000 5.19615i 0.686244 0.396203i
\(173\) 7.50000 12.9904i 0.570214 0.987640i −0.426329 0.904568i \(-0.640193\pi\)
0.996544 0.0830722i \(-0.0264732\pi\)
\(174\) 0 0
\(175\) −6.00000 3.46410i −0.453557 0.261861i
\(176\) 17.3205i 1.30558i
\(177\) 12.0000 0.901975
\(178\) −13.5000 + 7.79423i −1.01187 + 0.584202i
\(179\) −6.00000 + 10.3923i −0.448461 + 0.776757i −0.998286 0.0585225i \(-0.981361\pi\)
0.549825 + 0.835280i \(0.314694\pi\)
\(180\) 1.50000 0.866025i 0.111803 0.0645497i
\(181\) 3.50000 + 6.06218i 0.260153 + 0.450598i 0.966282 0.257485i \(-0.0828937\pi\)
−0.706129 + 0.708083i \(0.749560\pi\)
\(182\) 0 0
\(183\) −14.0000 −1.03491
\(184\) −6.00000 + 10.3923i −0.442326 + 0.766131i
\(185\) −1.50000 0.866025i −0.110282 0.0636715i
\(186\) 13.8564i 1.01600i
\(187\) −9.00000 5.19615i −0.658145 0.379980i
\(188\) 6.00000 0.437595
\(189\) 12.0000 + 6.92820i 0.872872 + 0.503953i
\(190\) 6.00000 0.435286
\(191\) 3.00000 + 5.19615i 0.217072 + 0.375980i 0.953912 0.300088i \(-0.0970159\pi\)
−0.736839 + 0.676068i \(0.763683\pi\)
\(192\) 1.00000 1.73205i 0.0721688 0.125000i
\(193\) 15.5885i 1.12208i −0.827788 0.561041i \(-0.810401\pi\)
0.827788 0.561041i \(-0.189599\pi\)
\(194\) −19.5000 + 11.2583i −1.40002 + 0.808301i
\(195\) 0 0
\(196\) −2.50000 4.33013i −0.178571 0.309295i
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) −3.00000 5.19615i −0.213201 0.369274i
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 3.46410i 0.244949i
\(201\) −12.0000 6.92820i −0.846415 0.488678i
\(202\) 10.5000 18.1865i 0.738777 1.27960i
\(203\) 0 0
\(204\) 3.00000 + 5.19615i 0.210042 + 0.363803i
\(205\) 9.00000 + 5.19615i 0.628587 + 0.362915i
\(206\) 12.0000 0.836080
\(207\) 6.92820i 0.481543i
\(208\) 0 0
\(209\) 6.92820i 0.479234i
\(210\) −18.0000 + 10.3923i −1.24212 + 0.717137i
\(211\) 10.0000 + 17.3205i 0.688428 + 1.19239i 0.972346 + 0.233544i \(0.0750324\pi\)
−0.283918 + 0.958849i \(0.591634\pi\)
\(212\) 1.50000 2.59808i 0.103020 0.178437i
\(213\) 6.00000 3.46410i 0.411113 0.237356i
\(214\) −12.0000 20.7846i −0.820303 1.42081i
\(215\) 9.00000 + 15.5885i 0.613795 + 1.06312i
\(216\) 6.92820i 0.471405i
\(217\) 13.8564i 0.940634i
\(218\) −15.0000 −1.01593
\(219\) −14.0000 24.2487i −0.946032 1.63858i
\(220\) −6.00000 −0.404520
\(221\) 0 0
\(222\) 3.00000 1.73205i 0.201347 0.116248i
\(223\) 1.00000 + 1.73205i 0.0669650 + 0.115987i 0.897564 0.440884i \(-0.145335\pi\)
−0.830599 + 0.556871i \(0.812002\pi\)
\(224\) 9.00000 15.5885i 0.601338 1.04155i
\(225\) −1.00000 1.73205i −0.0666667 0.115470i
\(226\) −12.0000 20.7846i −0.798228 1.38257i
\(227\) 6.00000 + 3.46410i 0.398234 + 0.229920i 0.685722 0.727864i \(-0.259487\pi\)
−0.287488 + 0.957784i \(0.592820\pi\)
\(228\) −2.00000 + 3.46410i −0.132453 + 0.229416i
\(229\) −7.00000 −0.462573 −0.231287 0.972886i \(-0.574293\pi\)
−0.231287 + 0.972886i \(0.574293\pi\)
\(230\) 18.0000 + 10.3923i 1.18688 + 0.685248i
\(231\) 12.0000 + 20.7846i 0.789542 + 1.36753i
\(232\) 0 0
\(233\) 13.8564i 0.907763i −0.891062 0.453882i \(-0.850039\pi\)
0.891062 0.453882i \(-0.149961\pi\)
\(234\) 0 0
\(235\) 10.3923i 0.677919i
\(236\) 3.00000 + 5.19615i 0.195283 + 0.338241i
\(237\) 16.0000 + 27.7128i 1.03931 + 1.80014i
\(238\) −9.00000 15.5885i −0.583383 1.01045i
\(239\) −9.00000 15.5885i −0.582162 1.00833i −0.995223 0.0976302i \(-0.968874\pi\)
0.413061 0.910703i \(-0.364460\pi\)
\(240\) −15.0000 8.66025i −0.968246 0.559017i
\(241\) −8.50000 14.7224i −0.547533 0.948355i −0.998443 0.0557856i \(-0.982234\pi\)
0.450910 0.892570i \(-0.351100\pi\)
\(242\) 1.73205i 0.111340i
\(243\) 5.00000 + 8.66025i 0.320750 + 0.555556i
\(244\) −3.50000 6.06218i −0.224065 0.388091i
\(245\) 7.50000 4.33013i 0.479157 0.276642i
\(246\) −18.0000 + 10.3923i −1.14764 + 0.662589i
\(247\) 0 0
\(248\) 6.00000 3.46410i 0.381000 0.219971i
\(249\) 24.0000 1.52094
\(250\) −21.0000 −1.32816
\(251\) −18.0000 + 10.3923i −1.13615 + 0.655956i −0.945474 0.325697i \(-0.894401\pi\)
−0.190676 + 0.981653i \(0.561068\pi\)
\(252\) 3.46410i 0.218218i
\(253\) 12.0000 20.7846i 0.754434 1.30672i
\(254\) −30.0000 + 17.3205i −1.88237 + 1.08679i
\(255\) −9.00000 + 5.19615i −0.563602 + 0.325396i
\(256\) 19.0000 1.18750
\(257\) −7.50000 + 4.33013i −0.467837 + 0.270106i −0.715334 0.698783i \(-0.753725\pi\)
0.247497 + 0.968889i \(0.420392\pi\)
\(258\) −36.0000 −2.24126
\(259\) −3.00000 + 1.73205i −0.186411 + 0.107624i
\(260\) 0 0
\(261\) 0 0
\(262\) −24.0000 −1.48272
\(263\) 12.0000 0.739952 0.369976 0.929041i \(-0.379366\pi\)
0.369976 + 0.929041i \(0.379366\pi\)
\(264\) −6.00000 + 10.3923i −0.369274 + 0.639602i
\(265\) 4.50000 + 2.59808i 0.276433 + 0.159599i
\(266\) 6.00000 10.3923i 0.367884 0.637193i
\(267\) 18.0000 1.10158
\(268\) 6.92820i 0.423207i
\(269\) 1.73205i 0.105605i 0.998605 + 0.0528025i \(0.0168154\pi\)
−0.998605 + 0.0528025i \(0.983185\pi\)
\(270\) 12.0000 0.730297
\(271\) −9.00000 + 5.19615i −0.546711 + 0.315644i −0.747794 0.663930i \(-0.768887\pi\)
0.201083 + 0.979574i \(0.435554\pi\)
\(272\) 7.50000 12.9904i 0.454754 0.787658i
\(273\) 0 0
\(274\) 0 0
\(275\) 6.92820i 0.417786i
\(276\) −12.0000 + 6.92820i −0.722315 + 0.417029i
\(277\) 12.0000 + 6.92820i 0.721010 + 0.416275i 0.815124 0.579286i \(-0.196669\pi\)
−0.0941142 + 0.995561i \(0.530002\pi\)
\(278\) 3.46410i 0.207763i
\(279\) 2.00000 3.46410i 0.119737 0.207390i
\(280\) 9.00000 + 5.19615i 0.537853 + 0.310530i
\(281\) −7.50000 + 4.33013i −0.447412 + 0.258314i −0.706737 0.707477i \(-0.749833\pi\)
0.259324 + 0.965790i \(0.416500\pi\)
\(282\) −18.0000 10.3923i −1.07188 0.618853i
\(283\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(284\) 3.00000 + 1.73205i 0.178017 + 0.102778i
\(285\) −6.00000 3.46410i −0.355409 0.205196i
\(286\) 0 0
\(287\) 18.0000 10.3923i 1.06251 0.613438i
\(288\) 4.50000 2.59808i 0.265165 0.153093i
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) 0 0
\(291\) 26.0000 1.52415
\(292\) 7.00000 12.1244i 0.409644 0.709524i
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 17.3205i 1.01015i
\(295\) −9.00000 + 5.19615i −0.524000 + 0.302532i
\(296\) −1.50000 0.866025i −0.0871857 0.0503367i
\(297\) 13.8564i 0.804030i
\(298\) −4.50000 + 7.79423i −0.260678 + 0.451508i
\(299\) 0 0
\(300\) 2.00000 3.46410i 0.115470 0.200000i
\(301\) 36.0000 2.07501
\(302\) 24.0000 1.38104
\(303\) −21.0000 + 12.1244i −1.20642 + 0.696526i
\(304\) 10.0000 0.573539
\(305\) 10.5000 6.06218i 0.601228 0.347119i
\(306\) 5.19615i 0.297044i
\(307\) 1.00000 + 1.73205i 0.0570730 + 0.0988534i 0.893150 0.449758i \(-0.148490\pi\)
−0.836077 + 0.548612i \(0.815157\pi\)
\(308\) −6.00000 + 10.3923i −0.341882 + 0.592157i
\(309\) −12.0000 6.92820i −0.682656 0.394132i
\(310\) −6.00000 10.3923i −0.340777 0.590243i
\(311\) −3.00000 + 1.73205i −0.170114 + 0.0982156i −0.582640 0.812731i \(-0.697980\pi\)
0.412525 + 0.910946i \(0.364647\pi\)
\(312\) 0 0
\(313\) −11.0000 19.0526i −0.621757 1.07691i −0.989158 0.146852i \(-0.953086\pi\)
0.367402 0.930062i \(-0.380247\pi\)
\(314\) 21.0000 12.1244i 1.18510 0.684217i
\(315\) 6.00000 0.338062
\(316\) −8.00000 + 13.8564i −0.450035 + 0.779484i
\(317\) −13.5000 23.3827i −0.758236 1.31330i −0.943750 0.330661i \(-0.892728\pi\)
0.185514 0.982642i \(-0.440605\pi\)
\(318\) −9.00000 + 5.19615i −0.504695 + 0.291386i
\(319\) 0 0
\(320\) 1.73205i 0.0968246i
\(321\) 27.7128i 1.54678i
\(322\) 36.0000 20.7846i 2.00620 1.15828i
\(323\) 3.00000 5.19615i 0.166924 0.289122i
\(324\) −5.50000 + 9.52628i −0.305556 + 0.529238i
\(325\) 0 0
\(326\) 3.00000 + 1.73205i 0.166155 + 0.0959294i
\(327\) 15.0000 + 8.66025i 0.829502 + 0.478913i
\(328\) 9.00000 + 5.19615i 0.496942 + 0.286910i
\(329\) 18.0000 + 10.3923i 0.992372 + 0.572946i
\(330\) 18.0000 + 10.3923i 0.990867 + 0.572078i
\(331\) −4.00000 + 6.92820i −0.219860 + 0.380808i −0.954765 0.297361i \(-0.903893\pi\)
0.734905 + 0.678170i \(0.237227\pi\)
\(332\) 6.00000 + 10.3923i 0.329293 + 0.570352i
\(333\) −1.00000 −0.0547997
\(334\) 0 0
\(335\) 12.0000 0.655630
\(336\) −30.0000 + 17.3205i −1.63663 + 0.944911i
\(337\) 4.50000 2.59808i 0.245131 0.141526i −0.372402 0.928072i \(-0.621466\pi\)
0.617533 + 0.786545i \(0.288132\pi\)
\(338\) 19.5000 + 11.2583i 1.06066 + 0.612372i
\(339\) 27.7128i 1.50515i
\(340\) −4.50000 2.59808i −0.244047 0.140900i
\(341\) −12.0000 + 6.92820i −0.649836 + 0.375183i
\(342\) 3.00000 1.73205i 0.162221 0.0936586i
\(343\) 6.92820i 0.374088i
\(344\) 9.00000 + 15.5885i 0.485247 + 0.840473i
\(345\) −12.0000 20.7846i −0.646058 1.11901i
\(346\) −22.5000 12.9904i −1.20961 0.698367i
\(347\) 18.0000 0.966291 0.483145 0.875540i \(-0.339494\pi\)
0.483145 + 0.875540i \(0.339494\pi\)
\(348\) 0 0
\(349\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(350\) −6.00000 + 10.3923i −0.320713 + 0.555492i
\(351\) 0 0
\(352\) −18.0000 −0.959403
\(353\) 20.7846i 1.10625i 0.833097 + 0.553127i \(0.186565\pi\)
−0.833097 + 0.553127i \(0.813435\pi\)
\(354\) 20.7846i 1.10469i
\(355\) −3.00000 + 5.19615i −0.159223 + 0.275783i
\(356\) 4.50000 + 7.79423i 0.238500 + 0.413093i
\(357\) 20.7846i 1.10004i
\(358\) 18.0000 + 10.3923i 0.951330 + 0.549250i
\(359\) 6.00000 10.3923i 0.316668 0.548485i −0.663123 0.748511i \(-0.730769\pi\)
0.979791 + 0.200026i \(0.0641026\pi\)
\(360\) 1.50000 + 2.59808i 0.0790569 + 0.136931i
\(361\) −15.0000 −0.789474
\(362\) 10.5000 6.06218i 0.551868 0.318621i
\(363\) 1.00000 1.73205i 0.0524864 0.0909091i
\(364\) 0 0
\(365\) 21.0000 + 12.1244i 1.09919 + 0.634618i
\(366\) 24.2487i 1.26750i
\(367\) 20.7846i 1.08495i 0.840073 + 0.542474i \(0.182512\pi\)
−0.840073 + 0.542474i \(0.817488\pi\)
\(368\) 30.0000 + 17.3205i 1.56386 + 0.902894i
\(369\) 6.00000 0.312348
\(370\) −1.50000 + 2.59808i −0.0779813 + 0.135068i
\(371\) 9.00000 5.19615i 0.467257 0.269771i
\(372\) 8.00000 0.414781
\(373\) 11.5000 + 19.9186i 0.595447 + 1.03135i 0.993484 + 0.113975i \(0.0363585\pi\)
−0.398036 + 0.917370i \(0.630308\pi\)
\(374\) −9.00000 + 15.5885i −0.465379 + 0.806060i
\(375\) 21.0000 + 12.1244i 1.08444 + 0.626099i
\(376\) 10.3923i 0.535942i
\(377\) 0 0
\(378\) 12.0000 20.7846i 0.617213 1.06904i
\(379\) 10.3923i 0.533817i −0.963722 0.266908i \(-0.913998\pi\)
0.963722 0.266908i \(-0.0860021\pi\)
\(380\) 3.46410i 0.177705i
\(381\) 40.0000 2.04926
\(382\) 9.00000 5.19615i 0.460480 0.265858i
\(383\) 3.00000 5.19615i 0.153293 0.265511i −0.779143 0.626846i \(-0.784346\pi\)
0.932436 + 0.361335i \(0.117679\pi\)
\(384\) −21.0000 12.1244i −1.07165 0.618718i
\(385\) −18.0000 10.3923i −0.917365 0.529641i
\(386\) −27.0000 −1.37426
\(387\) 9.00000 + 5.19615i 0.457496 + 0.264135i
\(388\) 6.50000 + 11.2583i 0.329988 + 0.571555i
\(389\) −7.50000 12.9904i −0.380265 0.658638i 0.610835 0.791758i \(-0.290834\pi\)
−0.991100 + 0.133120i \(0.957501\pi\)
\(390\) 0 0
\(391\) 18.0000 10.3923i 0.910299 0.525561i
\(392\) 7.50000 4.33013i 0.378807 0.218704i
\(393\) 24.0000 + 13.8564i 1.21064 + 0.698963i
\(394\) 31.1769i 1.57067i
\(395\) −24.0000 13.8564i −1.20757 0.697191i
\(396\) −3.00000 + 1.73205i −0.150756 + 0.0870388i
\(397\) −1.50000 + 0.866025i −0.0752828 + 0.0434646i −0.537169 0.843475i \(-0.680506\pi\)
0.461886 + 0.886939i \(0.347173\pi\)
\(398\) 0 0
\(399\) −12.0000 + 6.92820i −0.600751 + 0.346844i
\(400\) −10.0000 −0.500000
\(401\) −10.5000 18.1865i −0.524345 0.908192i −0.999598 0.0283431i \(-0.990977\pi\)
0.475253 0.879849i \(-0.342356\pi\)
\(402\) −12.0000 + 20.7846i −0.598506 + 1.03664i
\(403\) 0 0
\(404\) −10.5000 6.06218i −0.522395 0.301605i
\(405\) −16.5000 9.52628i −0.819892 0.473365i
\(406\) 0 0
\(407\) 3.00000 + 1.73205i 0.148704 + 0.0858546i
\(408\) −9.00000 + 5.19615i −0.445566 + 0.257248i
\(409\) −15.5000 + 26.8468i −0.766426 + 1.32749i 0.173064 + 0.984911i \(0.444633\pi\)
−0.939490 + 0.342578i \(0.888700\pi\)
\(410\) 9.00000 15.5885i 0.444478 0.769859i
\(411\) 0 0
\(412\) 6.92820i 0.341328i
\(413\) 20.7846i 1.02274i
\(414\) 12.0000 0.589768
\(415\) −18.0000 + 10.3923i −0.883585 + 0.510138i
\(416\) 0 0
\(417\) 2.00000 3.46410i 0.0979404 0.169638i
\(418\) −12.0000 −0.586939
\(419\) −15.0000 + 8.66025i −0.732798 + 0.423081i −0.819445 0.573158i \(-0.805718\pi\)
0.0866469 + 0.996239i \(0.472385\pi\)
\(420\) 6.00000 + 10.3923i 0.292770 + 0.507093i
\(421\) 1.00000 0.0487370 0.0243685 0.999703i \(-0.492242\pi\)
0.0243685 + 0.999703i \(0.492242\pi\)
\(422\) 30.0000 17.3205i 1.46038 0.843149i
\(423\) 3.00000 + 5.19615i 0.145865 + 0.252646i
\(424\) 4.50000 + 2.59808i 0.218539 + 0.126174i
\(425\) −3.00000 + 5.19615i −0.145521 + 0.252050i
\(426\) −6.00000 10.3923i −0.290701 0.503509i
\(427\) 24.2487i 1.17348i
\(428\) −12.0000 + 6.92820i −0.580042 + 0.334887i
\(429\) 0 0
\(430\) 27.0000 15.5885i 1.30206 0.751742i
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 20.0000 0.962250
\(433\) −11.5000 + 19.9186i −0.552655 + 0.957226i 0.445427 + 0.895318i \(0.353052\pi\)
−0.998082 + 0.0619079i \(0.980282\pi\)
\(434\) −24.0000 −1.15204
\(435\) 0 0
\(436\) 8.66025i 0.414751i
\(437\) 12.0000 + 6.92820i 0.574038 + 0.331421i
\(438\) −42.0000 + 24.2487i −2.00684 + 1.15865i
\(439\) 41.5692i 1.98399i 0.126275 + 0.991995i \(0.459698\pi\)
−0.126275 + 0.991995i \(0.540302\pi\)
\(440\) 10.3923i 0.495434i
\(441\) 2.50000 4.33013i 0.119048 0.206197i
\(442\) 0 0
\(443\) 34.6410i 1.64584i −0.568154 0.822922i \(-0.692342\pi\)
0.568154 0.822922i \(-0.307658\pi\)
\(444\) −1.00000 1.73205i −0.0474579 0.0821995i
\(445\) −13.5000 + 7.79423i −0.639961 + 0.369482i
\(446\) 3.00000 1.73205i 0.142054 0.0820150i
\(447\) 9.00000 5.19615i 0.425685 0.245770i
\(448\) 3.00000 + 1.73205i 0.141737 + 0.0818317i
\(449\) −34.5000 19.9186i −1.62816 0.940016i −0.984643 0.174581i \(-0.944143\pi\)
−0.643513 0.765435i \(-0.722524\pi\)
\(450\) −3.00000 + 1.73205i −0.141421 + 0.0816497i
\(451\) −18.0000 10.3923i −0.847587 0.489355i
\(452\) −12.0000 + 6.92820i −0.564433 + 0.325875i
\(453\) −24.0000 13.8564i −1.12762 0.651031i
\(454\) 6.00000 10.3923i 0.281594 0.487735i
\(455\) 0 0
\(456\) −6.00000 3.46410i −0.280976 0.162221i
\(457\) 6.00000 3.46410i 0.280668 0.162044i −0.353058 0.935602i \(-0.614858\pi\)
0.633726 + 0.773558i \(0.281525\pi\)
\(458\) 12.1244i 0.566534i
\(459\) 6.00000 10.3923i 0.280056 0.485071i
\(460\) 6.00000 10.3923i 0.279751 0.484544i
\(461\) −7.50000 + 12.9904i −0.349310 + 0.605022i −0.986127 0.165992i \(-0.946917\pi\)
0.636817 + 0.771015i \(0.280251\pi\)
\(462\) 36.0000 20.7846i 1.67487 0.966988i
\(463\) −26.0000 −1.20832 −0.604161 0.796862i \(-0.706492\pi\)
−0.604161 + 0.796862i \(0.706492\pi\)
\(464\) 0 0
\(465\) 13.8564i 0.642575i
\(466\) −24.0000 −1.11178
\(467\) −9.00000 + 15.5885i −0.416470 + 0.721348i −0.995582 0.0939008i \(-0.970066\pi\)
0.579111 + 0.815249i \(0.303400\pi\)
\(468\) 0 0
\(469\) 12.0000 20.7846i 0.554109 0.959744i
\(470\) 18.0000 0.830278
\(471\) −28.0000 −1.29017
\(472\) −9.00000 + 5.19615i −0.414259 + 0.239172i
\(473\) −18.0000 31.1769i −0.827641 1.43352i
\(474\) 48.0000 27.7128i 2.20471 1.27289i
\(475\) −4.00000 −0.183533
\(476\) −9.00000 + 5.19615i −0.412514 + 0.238165i
\(477\) 3.00000 0.137361
\(478\) −27.0000 + 15.5885i −1.23495 + 0.712999i
\(479\) 9.00000 5.19615i 0.411220 0.237418i −0.280094 0.959973i \(-0.590365\pi\)
0.691314 + 0.722554i \(0.257032\pi\)
\(480\) −9.00000 + 15.5885i −0.410792 + 0.711512i
\(481\) 0 0
\(482\) −25.5000 + 14.7224i −1.16149 + 0.670588i
\(483\) −48.0000 −2.18408
\(484\) 1.00000 0.0454545
\(485\) −19.5000 + 11.2583i −0.885449 + 0.511214i
\(486\) 15.0000 8.66025i 0.680414 0.392837i
\(487\) −33.0000 + 19.0526i −1.49537 + 0.863354i −0.999986 0.00531860i \(-0.998307\pi\)
−0.495387 + 0.868672i \(0.664974\pi\)
\(488\) 10.5000 6.06218i 0.475313 0.274422i
\(489\) −2.00000 3.46410i −0.0904431 0.156652i
\(490\) −7.50000 12.9904i −0.338815 0.586846i
\(491\) 10.3923i 0.468998i −0.972116 0.234499i \(-0.924655\pi\)
0.972116 0.234499i \(-0.0753450\pi\)
\(492\) 6.00000 + 10.3923i 0.270501 + 0.468521i
\(493\) 0 0
\(494\) 0 0
\(495\) −3.00000 5.19615i −0.134840 0.233550i
\(496\) −10.0000 17.3205i −0.449013 0.777714i
\(497\) 6.00000 + 10.3923i 0.269137 + 0.466159i
\(498\) 41.5692i 1.86276i
\(499\) 20.0000 34.6410i 0.895323 1.55074i 0.0619186 0.998081i \(-0.480278\pi\)
0.833404 0.552664i \(-0.186389\pi\)
\(500\) 12.1244i 0.542218i
\(501\) 0 0
\(502\) 18.0000 + 31.1769i 0.803379 + 1.39149i
\(503\) −9.00000 5.19615i −0.401290 0.231685i 0.285750 0.958304i \(-0.407757\pi\)
−0.687041 + 0.726619i \(0.741091\pi\)
\(504\) 6.00000 0.267261
\(505\) 10.5000 18.1865i 0.467244 0.809290i
\(506\) −36.0000 20.7846i −1.60040 0.923989i
\(507\) −13.0000 22.5167i −0.577350 1.00000i
\(508\) 10.0000 + 17.3205i 0.443678 + 0.768473i
\(509\) −10.5000 + 18.1865i −0.465404 + 0.806104i −0.999220 0.0394971i \(-0.987424\pi\)
0.533815 + 0.845601i \(0.320758\pi\)
\(510\) 9.00000 + 15.5885i 0.398527 + 0.690268i
\(511\) 42.0000 24.2487i 1.85797 1.07270i
\(512\) 8.66025i 0.382733i
\(513\) 8.00000 0.353209
\(514\) 7.50000 + 12.9904i 0.330811 + 0.572981i
\(515\) 12.0000 0.528783
\(516\) 20.7846i 0.914991i
\(517\) 20.7846i 0.914106i
\(518\) 3.00000 + 5.19615i 0.131812 + 0.228306i
\(519\) 15.0000 + 25.9808i 0.658427 + 1.14043i
\(520\) 0 0
\(521\) −3.00000 + 5.19615i −0.131432 + 0.227648i −0.924229 0.381839i \(-0.875291\pi\)
0.792797 + 0.609486i \(0.208624\pi\)
\(522\) 0 0
\(523\) 12.0000 6.92820i 0.524723 0.302949i −0.214142 0.976803i \(-0.568695\pi\)
0.738865 + 0.673853i \(0.235362\pi\)
\(524\) 13.8564i 0.605320i
\(525\) 12.0000 6.92820i 0.523723 0.302372i
\(526\) 20.7846i 0.906252i
\(527\) −12.0000 −0.522728
\(528\) 30.0000 + 17.3205i 1.30558 + 0.753778i
\(529\) 12.5000 + 21.6506i 0.543478 + 0.941332i
\(530\) 4.50000 7.79423i 0.195468 0.338560i
\(531\) −3.00000 + 5.19615i −0.130189 + 0.225494i
\(532\) −6.00000 3.46410i −0.260133 0.150188i
\(533\) 0 0
\(534\) 31.1769i 1.34916i
\(535\) −12.0000 20.7846i −0.518805 0.898597i
\(536\) 12.0000 0.518321
\(537\) −12.0000 20.7846i −0.517838 0.896922i
\(538\) 3.00000 0.129339
\(539\) −15.0000 + 8.66025i −0.646096 + 0.373024i
\(540\) 6.92820i 0.298142i
\(541\) 14.5000 25.1147i 0.623404 1.07977i −0.365444 0.930834i \(-0.619083\pi\)
0.988847 0.148933i \(-0.0475840\pi\)
\(542\) 9.00000 + 15.5885i 0.386583 + 0.669582i
\(543\) −14.0000 −0.600798
\(544\) −13.5000 7.79423i −0.578808 0.334175i
\(545\) −15.0000 −0.642529
\(546\) 0 0
\(547\) 3.46410i 0.148114i −0.997254 0.0740571i \(-0.976405\pi\)
0.997254 0.0740571i \(-0.0235947\pi\)
\(548\) 0 0
\(549\) 3.50000 6.06218i 0.149376 0.258727i
\(550\) 12.0000 0.511682
\(551\) 0 0
\(552\) −12.0000 20.7846i −0.510754 0.884652i
\(553\) −48.0000 + 27.7128i −2.04117 + 1.17847i
\(554\) 12.0000 20.7846i 0.509831 0.883053i
\(555\) 3.00000 1.73205i 0.127343 0.0735215i
\(556\) 2.00000 0.0848189
\(557\) 43.3013i 1.83473i 0.398043 + 0.917367i \(0.369690\pi\)
−0.398043 + 0.917367i \(0.630310\pi\)
\(558\) −6.00000 3.46410i −0.254000 0.146647i
\(559\) 0 0
\(560\) 15.0000 25.9808i 0.633866 1.09789i
\(561\) 18.0000 10.3923i 0.759961 0.438763i
\(562\) 7.50000 + 12.9904i 0.316368 + 0.547966i
\(563\) 9.00000 15.5885i 0.379305 0.656975i −0.611656 0.791123i \(-0.709497\pi\)
0.990961 + 0.134148i \(0.0428299\pi\)
\(564\) −6.00000 + 10.3923i −0.252646 + 0.437595i
\(565\) −12.0000 20.7846i −0.504844 0.874415i
\(566\) 0 0
\(567\) −33.0000 + 19.0526i −1.38587 + 0.800132i
\(568\) −3.00000 + 5.19615i −0.125877 + 0.218026i
\(569\) 3.00000 5.19615i 0.125767 0.217834i −0.796266 0.604947i \(-0.793194\pi\)
0.922032 + 0.387113i \(0.126528\pi\)
\(570\) −6.00000 + 10.3923i −0.251312 + 0.435286i
\(571\) −36.0000 20.7846i −1.50655 0.869809i −0.999971 0.00761713i \(-0.997575\pi\)
−0.506582 0.862192i \(-0.669091\pi\)
\(572\) 0 0
\(573\) −12.0000 −0.501307
\(574\) −18.0000 31.1769i −0.751305 1.30130i
\(575\) −12.0000 6.92820i −0.500435 0.288926i
\(576\) 0.500000 + 0.866025i 0.0208333 + 0.0360844i
\(577\) 1.73205i 0.0721062i −0.999350 0.0360531i \(-0.988521\pi\)
0.999350 0.0360531i \(-0.0114785\pi\)
\(578\) 12.0000 6.92820i 0.499134 0.288175i
\(579\) 27.0000 + 15.5885i 1.12208 + 0.647834i
\(580\) 0 0
\(581\) 41.5692i 1.72458i
\(582\) 45.0333i 1.86669i
\(583\) −9.00000 5.19615i −0.372742 0.215203i
\(584\) 21.0000 + 12.1244i 0.868986 + 0.501709i
\(585\) 0 0
\(586\) 0 0
\(587\) 15.0000 + 8.66025i 0.619116 + 0.357447i 0.776525 0.630087i \(-0.216981\pi\)
−0.157409 + 0.987534i \(0.550314\pi\)
\(588\) 10.0000 0.412393
\(589\) −4.00000 6.92820i −0.164817 0.285472i
\(590\) 9.00000 + 15.5885i 0.370524 + 0.641767i
\(591\) 18.0000 31.1769i 0.740421 1.28245i
\(592\) −2.50000 + 4.33013i −0.102749 + 0.177967i
\(593\) −10.5000 + 18.1865i −0.431183 + 0.746831i −0.996976 0.0777165i \(-0.975237\pi\)
0.565792 + 0.824548i \(0.308570\pi\)
\(594\) −24.0000 −0.984732
\(595\) −9.00000 15.5885i −0.368964 0.639064i
\(596\) 4.50000 + 2.59808i 0.184327 + 0.106421i
\(597\) 0 0
\(598\) 0 0
\(599\) 12.0000 0.490307 0.245153 0.969484i \(-0.421162\pi\)
0.245153 + 0.969484i \(0.421162\pi\)
\(600\) 6.00000 + 3.46410i 0.244949 + 0.141421i
\(601\) 25.5000 + 14.7224i 1.04017 + 0.600541i 0.919881 0.392199i \(-0.128285\pi\)
0.120286 + 0.992739i \(0.461619\pi\)
\(602\) 62.3538i 2.54135i
\(603\) 6.00000 3.46410i 0.244339 0.141069i
\(604\) 13.8564i 0.563809i
\(605\) 1.73205i 0.0704179i
\(606\) 21.0000 + 36.3731i 0.853067 + 1.47755i
\(607\) 20.0000 0.811775 0.405887 0.913923i \(-0.366962\pi\)
0.405887 + 0.913923i \(0.366962\pi\)
\(608\) 10.3923i 0.421464i
\(609\) 0 0
\(610\) −10.5000 18.1865i −0.425133 0.736351i
\(611\) 0 0
\(612\) −3.00000 −0.121268
\(613\) 5.00000 8.66025i 0.201948 0.349784i −0.747208 0.664590i \(-0.768606\pi\)
0.949156 + 0.314806i \(0.101939\pi\)
\(614\) 3.00000 1.73205i 0.121070 0.0698999i
\(615\) −18.0000 + 10.3923i −0.725830 + 0.419058i
\(616\) −18.0000 10.3923i −0.725241 0.418718i
\(617\) 41.5692i 1.67351i 0.547575 + 0.836757i \(0.315551\pi\)
−0.547575 + 0.836757i \(0.684449\pi\)
\(618\) −12.0000 + 20.7846i −0.482711 + 0.836080i
\(619\) 36.0000 + 20.7846i 1.44696 + 0.835404i 0.998299 0.0582971i \(-0.0185671\pi\)
0.448663 + 0.893701i \(0.351900\pi\)
\(620\) −6.00000 + 3.46410i −0.240966 + 0.139122i
\(621\) 24.0000 + 13.8564i 0.963087 + 0.556038i
\(622\) 3.00000 + 5.19615i 0.120289 + 0.208347i
\(623\) 31.1769i 1.24908i
\(624\) 0 0
\(625\) −11.0000 −0.440000
\(626\) −33.0000 + 19.0526i −1.31895 + 0.761493i
\(627\) 12.0000 + 6.92820i 0.479234 + 0.276686i
\(628\) −7.00000 12.1244i −0.279330 0.483814i
\(629\) 1.50000 + 2.59808i 0.0598089 + 0.103592i
\(630\) 10.3923i 0.414039i
\(631\) −42.0000 + 24.2487i −1.67199 + 0.965326i −0.705473 + 0.708737i \(0.749265\pi\)
−0.966521 + 0.256589i \(0.917401\pi\)
\(632\) −24.0000 13.8564i −0.954669 0.551178i
\(633\) −40.0000 −1.58986
\(634\) −40.5000 + 23.3827i −1.60846 + 0.928645i
\(635\) −30.0000 + 17.3205i −1.19051 + 0.687343i
\(636\) 3.00000 + 5.19615i 0.118958 + 0.206041i
\(637\) 0 0
\(638\) 0 0
\(639\) 3.46410i 0.137038i
\(640\) 21.0000 0.830098
\(641\) 4.50000 + 2.59808i 0.177739 + 0.102618i 0.586230 0.810145i \(-0.300611\pi\)
−0.408491 + 0.912762i \(0.633945\pi\)
\(642\) 48.0000 1.89441
\(643\) 22.0000 + 38.1051i 0.867595 + 1.50272i 0.864447 + 0.502724i \(0.167669\pi\)
0.00314839 + 0.999995i \(0.498998\pi\)
\(644\) −12.0000 20.7846i −0.472866 0.819028i
\(645\) −36.0000 −1.41750
\(646\) −9.00000 5.19615i −0.354100 0.204440i
\(647\) 3.00000 + 5.19615i 0.117942 + 0.204282i 0.918952 0.394369i \(-0.129037\pi\)
−0.801010 + 0.598651i \(0.795704\pi\)
\(648\) −16.5000 9.52628i −0.648181 0.374228i
\(649\) 18.0000 10.3923i 0.706562 0.407934i
\(650\) 0 0
\(651\) 24.0000 + 13.8564i 0.940634 + 0.543075i
\(652\) 1.00000 1.73205i 0.0391630 0.0678323i
\(653\) 29.4449i 1.15227i −0.817356 0.576133i \(-0.804561\pi\)
0.817356 0.576133i \(-0.195439\pi\)
\(654\) 15.0000 25.9808i 0.586546 1.01593i
\(655\) −24.0000 −0.937758
\(656\) 15.0000 25.9808i 0.585652 1.01438i
\(657\) 14.0000 0.546192
\(658\) 18.0000 31.1769i 0.701713 1.21540i
\(659\) 9.00000 + 5.19615i 0.350590 + 0.202413i 0.664945 0.746892i \(-0.268455\pi\)
−0.314355 + 0.949306i \(0.601788\pi\)
\(660\) 6.00000 10.3923i 0.233550 0.404520i
\(661\) 18.0000 10.3923i 0.700119 0.404214i −0.107273 0.994230i \(-0.534212\pi\)
0.807392 + 0.590016i \(0.200879\pi\)
\(662\) 12.0000 + 6.92820i 0.466393 + 0.269272i
\(663\) 0 0
\(664\) −18.0000 + 10.3923i −0.698535 + 0.403300i
\(665\) 6.00000 10.3923i 0.232670 0.402996i
\(666\) 1.73205i 0.0671156i
\(667\) 0 0
\(668\) 0 0
\(669\) −4.00000 −0.154649
\(670\) 20.7846i 0.802980i
\(671\) −21.0000 + 12.1244i −0.810696 + 0.468056i
\(672\) 18.0000 + 31.1769i 0.694365 + 1.20268i
\(673\) −16.5000 9.52628i −0.636028 0.367211i 0.147055 0.989128i \(-0.453021\pi\)
−0.783083 + 0.621917i \(0.786354\pi\)
\(674\) −4.50000 7.79423i −0.173334 0.300222i
\(675\) −8.00000 −0.307920
\(676\) 6.50000 11.2583i 0.250000 0.433013i
\(677\) 13.5000 23.3827i 0.518847 0.898670i −0.480913 0.876768i \(-0.659695\pi\)
0.999760 0.0219013i \(-0.00697196\pi\)
\(678\) 48.0000 1.84343
\(679\) 45.0333i 1.72822i
\(680\) 4.50000 7.79423i 0.172567 0.298895i
\(681\) −12.0000 + 6.92820i −0.459841 + 0.265489i
\(682\) 12.0000 + 20.7846i 0.459504 + 0.795884i
\(683\) 20.7846i 0.795301i 0.917537 + 0.397650i \(0.130174\pi\)
−0.917537 + 0.397650i \(0.869826\pi\)
\(684\) −1.00000 1.73205i −0.0382360 0.0662266i
\(685\) 0 0
\(686\) 12.0000 0.458162
\(687\) 7.00000 12.1244i 0.267067 0.462573i
\(688\) 45.0000 25.9808i 1.71561 0.990507i
\(689\) 0 0
\(690\) −36.0000 + 20.7846i −1.37050 + 0.791257i
\(691\) 23.0000 + 39.8372i 0.874961 + 1.51548i 0.856804 + 0.515642i \(0.172447\pi\)
0.0181572 + 0.999835i \(0.494220\pi\)
\(692\) −7.50000 + 12.9904i −0.285107 + 0.493820i
\(693\) −12.0000 −0.455842
\(694\) 31.1769i 1.18346i
\(695\) 3.46410i 0.131401i
\(696\) 0 0
\(697\) −9.00000 15.5885i −0.340899 0.590455i
\(698\) 0 0
\(699\) 24.0000 + 13.8564i 0.907763 + 0.524097i
\(700\) 6.00000 + 3.46410i 0.226779 + 0.130931i
\(701\) 22.5167i 0.850443i −0.905089 0.425221i \(-0.860196\pi\)
0.905089 0.425221i \(-0.139804\pi\)
\(702\) 0 0
\(703\) −1.00000 + 1.73205i −0.0377157 + 0.0653255i
\(704\) 3.46410i 0.130558i
\(705\) −18.0000 10.3923i −0.677919 0.391397i
\(706\) 36.0000 1.35488
\(707\) −21.0000 36.3731i −0.789786 1.36795i
\(708\) −12.0000 −0.450988
\(709\) −1.50000 0.866025i −0.0563337 0.0325243i 0.471569 0.881829i \(-0.343688\pi\)
−0.527902 + 0.849305i \(0.677021\pi\)
\(710\) 9.00000 + 5.19615i 0.337764 + 0.195008i
\(711\) −16.0000 −0.600047
\(712\) −13.5000 + 7.79423i −0.505934 + 0.292101i
\(713\) 27.7128i 1.03785i
\(714\) 36.0000 1.34727
\(715\) 0 0
\(716\) 6.00000 10.3923i 0.224231 0.388379i
\(717\) 36.0000 1.34444
\(718\) −18.0000 10.3923i −0.671754 0.387837i
\(719\) −9.00000 + 15.5885i −0.335643 + 0.581351i −0.983608 0.180319i \(-0.942287\pi\)
0.647965 + 0.761670i \(0.275620\pi\)
\(720\) 7.50000 4.33013i 0.279508 0.161374i
\(721\) 12.0000 20.7846i 0.446903 0.774059i
\(722\) 25.9808i 0.966904i
\(723\) 34.0000 1.26447
\(724\) −3.50000 6.06218i −0.130076 0.225299i
\(725\) 0 0
\(726\) −3.00000 1.73205i −0.111340 0.0642824i
\(727\) 27.0000 + 15.5885i 1.00137 + 0.578144i 0.908655 0.417548i \(-0.137111\pi\)
0.0927199 + 0.995692i \(0.470444\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 21.0000 36.3731i 0.777245 1.34623i
\(731\) 31.1769i 1.15312i
\(732\) 14.0000 0.517455
\(733\) −25.0000 10.3923i −0.923396 0.383849i
\(734\) 36.0000 1.32878
\(735\) 17.3205i 0.638877i
\(736\) 18.0000 31.1769i 0.663489 1.14920i
\(737\) −24.0000 −0.884051
\(738\) 10.3923i 0.382546i
\(739\) −3.00000 1.73205i −0.110357 0.0637145i 0.443806 0.896123i \(-0.353628\pi\)
−0.554162 + 0.832409i \(0.686961\pi\)
\(740\) 1.50000 + 0.866025i 0.0551411 + 0.0318357i
\(741\) 0 0
\(742\) −9.00000 15.5885i −0.330400 0.572270i
\(743\) 42.0000 1.54083 0.770415 0.637542i \(-0.220049\pi\)
0.770415 + 0.637542i \(0.220049\pi\)
\(744\) 13.8564i 0.508001i
\(745\) −4.50000 + 7.79423i −0.164867 + 0.285558i
\(746\) 34.5000 19.9186i 1.26313 0.729271i
\(747\) −6.00000 + 10.3923i −0.219529 + 0.380235i
\(748\) 9.00000 + 5.19615i 0.329073 + 0.189990i
\(749\) −48.0000 −1.75388
\(750\) 21.0000 36.3731i 0.766812 1.32816i
\(751\) 33.0000 19.0526i 1.20419 0.695238i 0.242704 0.970100i \(-0.421966\pi\)
0.961483 + 0.274863i \(0.0886324\pi\)
\(752\) 30.0000 1.09399
\(753\) 41.5692i 1.51487i
\(754\) 0 0
\(755\) 24.0000 0.873449
\(756\) −12.0000 6.92820i −0.436436 0.251976i
\(757\) 18.0000 + 10.3923i 0.654221 + 0.377715i 0.790072 0.613015i \(-0.210043\pi\)
−0.135850 + 0.990729i \(0.543377\pi\)
\(758\) −18.0000 −0.653789
\(759\) 24.0000 + 41.5692i 0.871145 + 1.50887i
\(760\) 6.00000 0.217643
\(761\) 18.0000 + 10.3923i 0.652499 + 0.376721i 0.789413 0.613862i \(-0.210385\pi\)
−0.136914 + 0.990583i \(0.543718\pi\)
\(762\) 69.2820i 2.50982i
\(763\) −15.0000 + 25.9808i −0.543036 + 0.940567i
\(764\) −3.00000 5.19615i −0.108536 0.187990i
\(765\) 5.19615i 0.187867i
\(766\) −9.00000 5.19615i −0.325183 0.187745i
\(767\) 0 0
\(768\) −19.0000 + 32.9090i −0.685603 + 1.18750i
\(769\) −25.0000 43.3013i −0.901523 1.56148i −0.825518 0.564376i \(-0.809117\pi\)
−0.0760054 0.997107i \(-0.524217\pi\)
\(770\) −18.0000 + 31.1769i −0.648675 + 1.12354i
\(771\) 17.3205i 0.623783i
\(772\) 15.5885i 0.561041i
\(773\) −9.00000 −0.323708 −0.161854 0.986815i \(-0.551747\pi\)
−0.161854 + 0.986815i \(0.551747\pi\)
\(774\) 9.00000 15.5885i 0.323498 0.560316i
\(775\) 4.00000 + 6.92820i 0.143684 + 0.248868i
\(776\) −19.5000 + 11.2583i −0.700009 + 0.404151i
\(777\) 6.92820i 0.248548i
\(778\) −22.5000 + 12.9904i −0.806664 + 0.465728i
\(779\) 6.00000 10.3923i 0.214972 0.372343i
\(780\) 0 0
\(781\) 6.00000 10.3923i 0.214697 0.371866i
\(782\) −18.0000 31.1769i −0.643679 1.11488i
\(783\) 0 0
\(784\) −12.5000 21.6506i −0.446429 0.773237i
\(785\) 21.0000 12.1244i 0.749522 0.432737i
\(786\) 24.0000 41.5692i 0.856052 1.48272i
\(787\) 34.6410i 1.23482i 0.786642 + 0.617409i \(0.211818\pi\)
−0.786642 + 0.617409i \(0.788182\pi\)
\(788\) 18.0000 0.641223
\(789\) −12.0000 + 20.7846i −0.427211 + 0.739952i
\(790\) −24.0000 + 41.5692i −0.853882 + 1.47897i
\(791\) −48.0000 −1.70668
\(792\) −3.00000 5.19615i −0.106600 0.184637i
\(793\) 0 0
\(794\) 1.50000 + 2.59808i 0.0532330 + 0.0922023i
\(795\) −9.00000 + 5.19615i −0.319197 + 0.184289i
\(796\) 0 0
\(797\) 3.00000 0.106265 0.0531327 0.998587i \(-0.483079\pi\)
0.0531327 + 0.998587i \(0.483079\pi\)
\(798\) 12.0000 + 20.7846i 0.424795 + 0.735767i
\(799\) 9.00000 15.5885i 0.318397 0.551480i
\(800\) 10.3923i 0.367423i
\(801\) −4.50000 + 7.79423i −0.159000 + 0.275396i
\(802\) −31.5000 + 18.1865i −1.11230 + 0.642189i
\(803\) −42.0000 24.2487i −1.48215 0.855718i
\(804\) 12.0000 + 6.92820i 0.423207 + 0.244339i
\(805\) 36.0000 20.7846i 1.26883 0.732561i
\(806\) 0 0
\(807\) −3.00000 1.73205i −0.105605 0.0609711i
\(808\) 10.5000 18.1865i 0.369389 0.639800i
\(809\) 15.0000 0.527372 0.263686 0.964609i \(-0.415062\pi\)
0.263686 + 0.964609i \(0.415062\pi\)
\(810\) −16.5000 + 28.5788i −0.579751 + 1.00416i
\(811\) −2.00000 −0.0702295 −0.0351147 0.999383i \(-0.511180\pi\)
−0.0351147 + 0.999383i \(0.511180\pi\)
\(812\) 0 0
\(813\) 20.7846i 0.728948i
\(814\) 3.00000 5.19615i 0.105150 0.182125i
\(815\) 3.00000 + 1.73205i 0.105085 + 0.0606711i
\(816\) 15.0000 + 25.9808i 0.525105 + 0.909509i
\(817\) 18.0000 10.3923i 0.629740 0.363581i
\(818\) 46.5000 + 26.8468i 1.62583 + 0.938676i
\(819\) 0 0
\(820\) −9.00000 5.19615i −0.314294 0.181458i
\(821\) 33.0000 1.15171 0.575854 0.817553i \(-0.304670\pi\)
0.575854 + 0.817553i \(0.304670\pi\)
\(822\) 0 0
\(823\) 4.00000 + 6.92820i 0.139431 + 0.241502i 0.927281 0.374365i \(-0.122139\pi\)
−0.787850 + 0.615867i \(0.788806\pi\)
\(824\) 12.0000 0.418040
\(825\) −12.0000 6.92820i −0.417786 0.241209i
\(826\) 36.0000 1.25260
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 6.92820i 0.240772i
\(829\) −31.5000 18.1865i −1.09404 0.631644i −0.159391 0.987216i \(-0.550953\pi\)
−0.934649 + 0.355571i \(0.884286\pi\)
\(830\) 18.0000 + 31.1769i 0.624789 + 1.08217i
\(831\) −24.0000 + 13.8564i −0.832551 + 0.480673i
\(832\) 0 0
\(833\) −15.0000 −0.519719
\(834\) −6.00000 3.46410i −0.207763 0.119952i
\(835\) 0 0
\(836\) 6.92820i 0.239617i
\(837\) −8.00000 13.8564i −0.276520 0.478947i
\(838\) 15.0000 + 25.9808i 0.518166 + 0.897491i
\(839\) 15.0000 + 8.66025i 0.517858 + 0.298985i 0.736058 0.676919i \(-0.236685\pi\)
−0.218200 + 0.975904i \(0.570019\pi\)
\(840\) −18.0000 + 10.3923i −0.621059 + 0.358569i
\(841\) 29.0000 1.00000
\(842\) 1.73205i 0.0596904i
\(843\) 17.3205i 0.596550i
\(844\) −10.0000 17.3205i −0.344214 0.596196i
\(845\) 19.5000 + 11.2583i 0.670820 + 0.387298i
\(846\) 9.00000 5.19615i 0.309426 0.178647i
\(847\) 3.00000 + 1.73205i 0.103081 + 0.0595140i
\(848\) 7.50000 12.9904i 0.257551 0.446092i
\(849\) 0 0
\(850\) 9.00000 + 5.19615i 0.308697 + 0.178227i
\(851\) −6.00000 + 3.46410i −0.205677 + 0.118748i
\(852\) −6.00000 + 3.46410i −0.205557 + 0.118678i
\(853\) 23.5000 40.7032i 0.804625 1.39365i −0.111919 0.993717i \(-0.535700\pi\)
0.916544 0.399934i \(-0.130967\pi\)
\(854\) −42.0000 −1.43721
\(855\) 3.00000 1.73205i 0.102598 0.0592349i
\(856\) −12.0000 20.7846i −0.410152 0.710403i
\(857\) −25.5000 44.1673i −0.871063 1.50873i −0.860898 0.508778i \(-0.830097\pi\)
−0.0101655 0.999948i \(-0.503236\pi\)
\(858\) 0 0
\(859\) −46.0000 −1.56950 −0.784750 0.619813i \(-0.787209\pi\)
−0.784750 + 0.619813i \(0.787209\pi\)
\(860\) −9.00000 15.5885i −0.306897 0.531562i
\(861\) 41.5692i 1.41668i
\(862\) 0 0
\(863\) 18.0000 10.3923i 0.612727 0.353758i −0.161305 0.986905i \(-0.551570\pi\)
0.774032 + 0.633146i \(0.218237\pi\)
\(864\) 20.7846i 0.707107i
\(865\) −22.5000 12.9904i −0.765023 0.441686i
\(866\) 34.5000 + 19.9186i 1.17236 + 0.676861i
\(867\) −16.0000 −0.543388
\(868\) 13.8564i 0.470317i
\(869\) 48.0000 + 27.7128i 1.62829 + 0.940093i
\(870\) 0 0
\(871\) 0 0
\(872\) −15.0000 −0.507964
\(873\) −6.50000 + 11.2583i −0.219992 + 0.381037i
\(874\) 12.0000 20.7846i 0.405906 0.703050i
\(875\) −21.0000 + 36.3731i −0.709930 + 1.22963i
\(876\) 14.0000 + 24.2487i 0.473016 + 0.819288i
\(877\) −11.5000 19.9186i −0.388327 0.672603i 0.603897 0.797062i \(-0.293614\pi\)
−0.992225 + 0.124459i \(0.960280\pi\)
\(878\) 72.0000 2.42988
\(879\) 0 0
\(880\) −30.0000 −1.01130
\(881\) −27.0000 + 46.7654i −0.909653 + 1.57557i −0.0951067 + 0.995467i \(0.530319\pi\)
−0.814546 + 0.580098i \(0.803014\pi\)
\(882\) −7.50000 4.33013i −0.252538 0.145803i
\(883\) 30.0000 + 17.3205i 1.00958 + 0.582882i 0.911069 0.412254i \(-0.135259\pi\)
0.0985116 + 0.995136i \(0.468592\pi\)
\(884\) 0 0
\(885\) 20.7846i 0.698667i
\(886\) −60.0000 −2.01574
\(887\) 18.0000 + 10.3923i 0.604381 + 0.348939i 0.770763 0.637122i \(-0.219875\pi\)
−0.166382 + 0.986061i \(0.553209\pi\)
\(888\) 3.00000 1.73205i 0.100673 0.0581238i
\(889\) 69.2820i 2.32364i
\(890\) 13.5000 + 23.3827i 0.452521 + 0.783789i
\(891\) 33.0000 + 19.0526i 1.10554 + 0.638285i
\(892\) −1.00000 1.73205i −0.0334825 0.0579934i
\(893\) 12.0000 0.401565
\(894\) −9.00000 15.5885i −0.301005 0.521356i
\(895\) 18.0000 + 10.3923i 0.601674 + 0.347376i
\(896\) 21.0000 36.3731i 0.701561 1.21514i
\(897\) 0 0
\(898\) −34.5000 + 59.7558i −1.15128 + 1.99408i
\(899\) 0 0
\(900\) 1.00000 + 1.73205i 0.0333333 + 0.0577350i
\(901\) −4.50000 7.79423i −0.149917 0.259663i
\(902\) −18.0000 + 31.1769i −0.599334 + 1.03808i
\(903\) −36.0000 + 62.3538i −1.19800 + 2.07501i
\(904\) −12.0000 20.7846i −0.399114 0.691286i
\(905\) 10.5000 6.06218i 0.349032 0.201514i
\(906\) −24.0000 + 41.5692i −0.797347 + 1.38104i
\(907\) −4.00000 + 6.92820i −0.132818 + 0.230047i −0.924762 0.380547i \(-0.875736\pi\)
0.791944 + 0.610594i \(0.209069\pi\)
\(908\) −6.00000 3.46410i −0.199117 0.114960i
\(909\) 12.1244i 0.402139i
\(910\) 0 0
\(911\) 18.0000 10.3923i 0.596367 0.344312i −0.171244 0.985229i \(-0.554779\pi\)
0.767611 + 0.640916i \(0.221445\pi\)
\(912\) −10.0000 + 17.3205i −0.331133 + 0.573539i
\(913\) 36.0000 20.7846i 1.19143 0.687870i
\(914\) −6.00000 10.3923i −0.198462 0.343747i
\(915\) 24.2487i 0.801638i
\(916\) 7.00000 0.231287
\(917\) −24.0000 + 41.5692i −0.792550 + 1.37274i
\(918\) −18.0000 10.3923i −0.594089 0.342997i
\(919\) 38.1051i 1.25697i −0.777821 0.628486i \(-0.783675\pi\)
0.777821 0.628486i \(-0.216325\pi\)
\(920\) 18.0000 + 10.3923i 0.593442 + 0.342624i
\(921\) −4.00000 −0.131804
\(922\) 22.5000 + 12.9904i 0.740998 + 0.427815i
\(923\) 0 0
\(924\) −12.0000 20.7846i −0.394771 0.683763i
\(925\) 1.00000 1.73205i 0.0328798 0.0569495i
\(926\) 45.0333i 1.47989i
\(927\) 6.00000 3.46410i 0.197066 0.113776i
\(928\) 0 0
\(929\) 7.50000 + 12.9904i 0.246067 + 0.426201i 0.962431 0.271526i \(-0.0875283\pi\)
−0.716364 + 0.697727i \(0.754195\pi\)
\(930\) 24.0000 0.786991
\(931\) −5.00000 8.66025i −0.163868 0.283828i
\(932\) 13.8564i 0.453882i
\(933\) 6.92820i 0.226819i
\(934\) 27.0000 + 15.5885i 0.883467 + 0.510070i
\(935\) −9.00000 + 15.5885i −0.294331 + 0.509797i
\(936\) 0 0
\(937\) 9.50000 + 16.4545i 0.310351 + 0.537545i 0.978438 0.206539i \(-0.0662199\pi\)
−0.668087 + 0.744083i \(0.732887\pi\)
\(938\) −36.0000 20.7846i −1.17544 0.678642i
\(939\) 44.0000 1.43589
\(940\) 10.3923i 0.338960i
\(941\) −18.0000 + 10.3923i −0.586783 + 0.338779i −0.763825 0.645424i \(-0.776681\pi\)
0.177041 + 0.984203i \(0.443347\pi\)
\(942\) 48.4974i 1.58013i
\(943\) 36.0000 20.7846i 1.17232 0.676840i
\(944\) 15.0000 + 25.9808i 0.488208 + 0.845602i
\(945\) 12.0000 20.7846i 0.390360 0.676123i
\(946\) −54.0000 + 31.1769i −1.75569 + 1.01365i
\(947\) −24.0000 41.5692i −0.779895 1.35082i −0.932002 0.362454i \(-0.881939\pi\)
0.152106 0.988364i \(-0.451394\pi\)
\(948\) −16.0000 27.7128i −0.519656 0.900070i
\(949\) 0 0
\(950\) 6.92820i 0.224781i
\(951\) 54.0000 1.75107
\(952\) −9.00000 15.5885i −0.291692 0.505225i
\(953\) −51.0000 −1.65205 −0.826026 0.563632i \(-0.809404\pi\)
−0.826026 + 0.563632i \(0.809404\pi\)
\(954\) 5.19615i 0.168232i
\(955\) 9.00000 5.19615i 0.291233 0.168144i
\(956\) 9.00000 + 15.5885i 0.291081 + 0.504167i
\(957\) 0 0
\(958\) −9.00000 15.5885i −0.290777 0.503640i
\(959\) 0 0
\(960\) −3.00000 1.73205i −0.0968246 0.0559017i
\(961\) 7.50000 12.9904i 0.241935 0.419045i
\(962\) 0 0
\(963\) −12.0000 6.92820i −0.386695 0.223258i
\(964\) 8.50000 + 14.7224i 0.273767 + 0.474178i
\(965\) −27.0000 −0.869161
\(966\) 83.1384i 2.67494i
\(967\) −4.00000 + 6.92820i −0.128631 + 0.222796i −0.923147 0.384448i \(-0.874392\pi\)
0.794515 + 0.607244i \(0.207725\pi\)
\(968\) 1.73205i 0.0556702i
\(969\) 6.00000 + 10.3923i 0.192748 + 0.333849i
\(970\) 19.5000 + 33.7750i 0.626107 + 1.08445i
\(971\) −30.0000 51.9615i −0.962746 1.66752i −0.715553 0.698558i \(-0.753825\pi\)
−0.247193 0.968966i \(-0.579508\pi\)
\(972\) −5.00000 8.66025i −0.160375 0.277778i
\(973\) 6.00000 + 3.46410i 0.192351 + 0.111054i
\(974\) 33.0000 + 57.1577i 1.05739 + 1.83145i
\(975\) 0 0
\(976\) −17.5000 30.3109i −0.560161 0.970228i
\(977\) −21.0000 36.3731i −0.671850 1.16368i −0.977379 0.211495i \(-0.932167\pi\)
0.305530 0.952183i \(-0.401167\pi\)
\(978\) −6.00000 + 3.46410i −0.191859 + 0.110770i
\(979\) 27.0000 15.5885i 0.862924 0.498209i
\(980\) −7.50000 + 4.33013i −0.239579 + 0.138321i
\(981\) −7.50000 + 4.33013i −0.239457 + 0.138250i
\(982\) −18.0000 −0.574403
\(983\) 18.0000 0.574111 0.287055 0.957914i \(-0.407324\pi\)
0.287055 + 0.957914i \(0.407324\pi\)
\(984\) −18.0000 + 10.3923i −0.573819 + 0.331295i
\(985\) 31.1769i 0.993379i
\(986\) 0 0
\(987\) −36.0000 + 20.7846i −1.14589 + 0.661581i
\(988\) 0 0
\(989\) 72.0000 2.28947
\(990\) −9.00000 + 5.19615i −0.286039 + 0.165145i
\(991\) −40.0000 −1.27064 −0.635321 0.772248i \(-0.719132\pi\)
−0.635321 + 0.772248i \(0.719132\pi\)
\(992\) −18.0000 + 10.3923i −0.571501 + 0.329956i
\(993\) −8.00000 13.8564i −0.253872 0.439720i
\(994\) 18.0000 10.3923i 0.570925 0.329624i
\(995\) 0 0
\(996\) −24.0000 −0.760469
\(997\) 20.5000 35.5070i 0.649242 1.12452i −0.334063 0.942551i \(-0.608420\pi\)
0.983304 0.181968i \(-0.0582469\pi\)
\(998\) −60.0000 34.6410i −1.89927 1.09654i
\(999\) −2.00000 + 3.46410i −0.0632772 + 0.109599i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 733.2.e.a.426.1 yes 2
733.308 even 6 inner 733.2.e.a.308.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
733.2.e.a.308.1 2 733.308 even 6 inner
733.2.e.a.426.1 yes 2 1.1 even 1 trivial