L(s) = 1 | + 3-s + 3·5-s − 4·7-s + 3·9-s + 3·11-s − 2·13-s + 3·15-s − 7·17-s + 19-s − 4·21-s − 23-s + 5·25-s + 8·27-s − 4·29-s − 9·31-s + 3·33-s − 12·35-s + 3·37-s − 2·39-s + 20·41-s + 8·43-s + 9·45-s − 3·47-s + 9·49-s − 7·51-s + 53-s + 9·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.34·5-s − 1.51·7-s + 9-s + 0.904·11-s − 0.554·13-s + 0.774·15-s − 1.69·17-s + 0.229·19-s − 0.872·21-s − 0.208·23-s + 25-s + 1.53·27-s − 0.742·29-s − 1.61·31-s + 0.522·33-s − 2.02·35-s + 0.493·37-s − 0.320·39-s + 3.12·41-s + 1.21·43-s + 1.34·45-s − 0.437·47-s + 9/7·49-s − 0.980·51-s + 0.137·53-s + 1.21·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 529984 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 529984 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.716100195\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.716100195\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.63093029142436353287112069061, −9.737235304556369366034061668449, −9.731865444256721017122381481268, −9.465413251542432290872909183943, −9.021570395243144228664604523765, −8.840313978190087346445080687555, −7.969090184181778678623087228087, −7.52924624440617576593640281936, −6.79033916091804252130232647924, −6.78172719457631538530772791062, −6.40277559528180129545465932433, −5.66526736330495188913803836571, −5.44419339073611806752710635074, −4.56076225428856058876833923460, −3.96437978248850991825437624709, −3.81015905313302725879341380622, −2.74511818347429415360205142110, −2.45128867925479836039053771455, −1.87788654386522647609214175329, −0.837591603142460961702535837250,
0.837591603142460961702535837250, 1.87788654386522647609214175329, 2.45128867925479836039053771455, 2.74511818347429415360205142110, 3.81015905313302725879341380622, 3.96437978248850991825437624709, 4.56076225428856058876833923460, 5.44419339073611806752710635074, 5.66526736330495188913803836571, 6.40277559528180129545465932433, 6.78172719457631538530772791062, 6.79033916091804252130232647924, 7.52924624440617576593640281936, 7.969090184181778678623087228087, 8.840313978190087346445080687555, 9.021570395243144228664604523765, 9.465413251542432290872909183943, 9.731865444256721017122381481268, 9.737235304556369366034061668449, 10.63093029142436353287112069061