Properties

Label 2-6720-1.1-c1-0-1
Degree $2$
Conductor $6720$
Sign $1$
Analytic cond. $53.6594$
Root an. cond. $7.32526$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 7-s + 9-s − 2·11-s − 4·13-s + 15-s + 2·17-s + 2·19-s + 21-s − 4·23-s + 25-s − 27-s − 6·29-s + 2·31-s + 2·33-s + 35-s − 10·37-s + 4·39-s − 10·41-s + 12·43-s − 45-s + 8·47-s + 49-s − 2·51-s + 2·55-s − 2·57-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.377·7-s + 1/3·9-s − 0.603·11-s − 1.10·13-s + 0.258·15-s + 0.485·17-s + 0.458·19-s + 0.218·21-s − 0.834·23-s + 1/5·25-s − 0.192·27-s − 1.11·29-s + 0.359·31-s + 0.348·33-s + 0.169·35-s − 1.64·37-s + 0.640·39-s − 1.56·41-s + 1.82·43-s − 0.149·45-s + 1.16·47-s + 1/7·49-s − 0.280·51-s + 0.269·55-s − 0.264·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6720\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(53.6594\)
Root analytic conductor: \(7.32526\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6720,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6923238545\)
\(L(\frac12)\) \(\approx\) \(0.6923238545\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 + T \)
good11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.68644732226053446030767385232, −7.41133995006281390270560894447, −6.64350677810854885419092220353, −5.70522143840793037649067280854, −5.27264772068337911049515166811, −4.43621706165973651292976079208, −3.63357330715571608109874316024, −2.79001339268664925957019516982, −1.78965542557283848314017161132, −0.42588739009589384131863225836, 0.42588739009589384131863225836, 1.78965542557283848314017161132, 2.79001339268664925957019516982, 3.63357330715571608109874316024, 4.43621706165973651292976079208, 5.27264772068337911049515166811, 5.70522143840793037649067280854, 6.64350677810854885419092220353, 7.41133995006281390270560894447, 7.68644732226053446030767385232

Graph of the $Z$-function along the critical line