Properties

Label 2-6664-1.1-c1-0-111
Degree $2$
Conductor $6664$
Sign $-1$
Analytic cond. $53.2123$
Root an. cond. $7.29467$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 3·9-s + 2·11-s − 4·13-s + 17-s + 5·19-s + 9·23-s − 4·25-s − 6·29-s + 8·31-s − 11·37-s − 4·41-s − 43-s + 3·45-s − 2·47-s + 6·53-s − 2·55-s + 9·59-s + 6·61-s + 4·65-s − 7·67-s + 71-s + 4·73-s − 8·79-s + 9·81-s − 4·83-s − 85-s + ⋯
L(s)  = 1  − 0.447·5-s − 9-s + 0.603·11-s − 1.10·13-s + 0.242·17-s + 1.14·19-s + 1.87·23-s − 4/5·25-s − 1.11·29-s + 1.43·31-s − 1.80·37-s − 0.624·41-s − 0.152·43-s + 0.447·45-s − 0.291·47-s + 0.824·53-s − 0.269·55-s + 1.17·59-s + 0.768·61-s + 0.496·65-s − 0.855·67-s + 0.118·71-s + 0.468·73-s − 0.900·79-s + 81-s − 0.439·83-s − 0.108·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6664 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6664\)    =    \(2^{3} \cdot 7^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(53.2123\)
Root analytic conductor: \(7.29467\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6664,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
17 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 4 T + p T^{2} \) 1.13.e
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.43316832123095824552581854288, −7.16944354565385241128712198613, −6.25820759041119387538936776974, −5.28345281243972624418273515776, −5.02866721281013756272124867657, −3.85067301730031915156356164414, −3.20649607198224199715067645321, −2.43750576977275347280275841530, −1.20116384355878213550195591800, 0, 1.20116384355878213550195591800, 2.43750576977275347280275841530, 3.20649607198224199715067645321, 3.85067301730031915156356164414, 5.02866721281013756272124867657, 5.28345281243972624418273515776, 6.25820759041119387538936776974, 7.16944354565385241128712198613, 7.43316832123095824552581854288

Graph of the $Z$-function along the critical line