L(s) = 1 | + 2·5-s − 6·9-s + 12·13-s − 25-s + 4·37-s − 20·41-s − 12·45-s + 14·49-s + 28·53-s + 24·65-s + 27·81-s − 20·89-s − 72·117-s + 22·121-s − 12·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 82·169-s + 173-s + 179-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 2·9-s + 3.32·13-s − 1/5·25-s + 0.657·37-s − 3.12·41-s − 1.78·45-s + 2·49-s + 3.84·53-s + 2.97·65-s + 3·81-s − 2.11·89-s − 6.65·117-s + 2·121-s − 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 6.30·169-s + 0.0760·173-s + 0.0747·179-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 409600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 409600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.174124652\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.174124652\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.75303934526943902420996081597, −10.35795920313683108427023191836, −10.12808288868102235352532880412, −9.337043635161965010128317803859, −8.760262332511950030321180966448, −8.750650823645753158718143540585, −8.395248025325154176219627201522, −8.014066743832214300646375314543, −7.07199505435686435711251716096, −6.70345157950584420237967460650, −6.08817597828249896892998079615, −5.73681472321274272716718651273, −5.68699361426989069092165727334, −5.05080280077562764934099287219, −3.93973282623656955346345631119, −3.76762221979729374103780599959, −3.10390762895250756848351725549, −2.46820928880916121490131803546, −1.70994289517454519158336061999, −0.846342616596343495164064277755,
0.846342616596343495164064277755, 1.70994289517454519158336061999, 2.46820928880916121490131803546, 3.10390762895250756848351725549, 3.76762221979729374103780599959, 3.93973282623656955346345631119, 5.05080280077562764934099287219, 5.68699361426989069092165727334, 5.73681472321274272716718651273, 6.08817597828249896892998079615, 6.70345157950584420237967460650, 7.07199505435686435711251716096, 8.014066743832214300646375314543, 8.395248025325154176219627201522, 8.750650823645753158718143540585, 8.760262332511950030321180966448, 9.337043635161965010128317803859, 10.12808288868102235352532880412, 10.35795920313683108427023191836, 10.75303934526943902420996081597