Properties

Label 2-6336-1.1-c1-0-38
Degree $2$
Conductor $6336$
Sign $1$
Analytic cond. $50.5932$
Root an. cond. $7.11289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s − 11-s + 6·13-s + 6·17-s − 2·19-s + 8·23-s − 5·25-s + 2·29-s + 4·31-s − 2·37-s + 10·41-s − 6·43-s − 4·47-s − 3·49-s + 4·53-s − 4·59-s + 2·61-s − 8·67-s + 12·71-s − 2·73-s − 2·77-s − 14·79-s + 4·83-s + 12·91-s + 2·97-s − 14·101-s + 16·103-s + ⋯
L(s)  = 1  + 0.755·7-s − 0.301·11-s + 1.66·13-s + 1.45·17-s − 0.458·19-s + 1.66·23-s − 25-s + 0.371·29-s + 0.718·31-s − 0.328·37-s + 1.56·41-s − 0.914·43-s − 0.583·47-s − 3/7·49-s + 0.549·53-s − 0.520·59-s + 0.256·61-s − 0.977·67-s + 1.42·71-s − 0.234·73-s − 0.227·77-s − 1.57·79-s + 0.439·83-s + 1.25·91-s + 0.203·97-s − 1.39·101-s + 1.57·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6336\)    =    \(2^{6} \cdot 3^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(50.5932\)
Root analytic conductor: \(7.11289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6336,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.661203843\)
\(L(\frac12)\) \(\approx\) \(2.661203843\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.098635818276792269264128027492, −7.46807807596193722223289663417, −6.55969792597164920396527926365, −5.87412996828179799358291335242, −5.22586757235778997067135765525, −4.43377069596031381327397780689, −3.58239053787350433227994140979, −2.87043661698058989228588247649, −1.64743961772857105245471961438, −0.931831124352631770674309179721, 0.931831124352631770674309179721, 1.64743961772857105245471961438, 2.87043661698058989228588247649, 3.58239053787350433227994140979, 4.43377069596031381327397780689, 5.22586757235778997067135765525, 5.87412996828179799358291335242, 6.55969792597164920396527926365, 7.46807807596193722223289663417, 8.098635818276792269264128027492

Graph of the $Z$-function along the critical line