Properties

Label 2-6336-1.1-c1-0-15
Degree $2$
Conductor $6336$
Sign $1$
Analytic cond. $50.5932$
Root an. cond. $7.11289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s + 11-s + 2·13-s − 2·17-s − 6·19-s + 4·23-s − 5·25-s − 10·29-s + 8·31-s + 6·37-s − 6·41-s + 6·43-s − 3·49-s + 12·53-s + 12·59-s + 6·61-s + 8·67-s + 8·71-s − 10·73-s − 2·77-s − 10·79-s + 4·83-s + 16·89-s − 4·91-s − 14·97-s − 2·101-s − 4·103-s + ⋯
L(s)  = 1  − 0.755·7-s + 0.301·11-s + 0.554·13-s − 0.485·17-s − 1.37·19-s + 0.834·23-s − 25-s − 1.85·29-s + 1.43·31-s + 0.986·37-s − 0.937·41-s + 0.914·43-s − 3/7·49-s + 1.64·53-s + 1.56·59-s + 0.768·61-s + 0.977·67-s + 0.949·71-s − 1.17·73-s − 0.227·77-s − 1.12·79-s + 0.439·83-s + 1.69·89-s − 0.419·91-s − 1.42·97-s − 0.199·101-s − 0.394·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6336\)    =    \(2^{6} \cdot 3^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(50.5932\)
Root analytic conductor: \(7.11289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6336,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.505220082\)
\(L(\frac12)\) \(\approx\) \(1.505220082\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.137877385419272587734483224647, −7.20300503359676768568111986003, −6.58278382469561048632165262703, −6.03678412878931232508658806687, −5.27000959062313134340258385299, −4.16510007625915039939928222095, −3.79830622205186791501117577874, −2.72434347711442386925162874595, −1.91957125953450629528217986656, −0.62339616520112493051272374163, 0.62339616520112493051272374163, 1.91957125953450629528217986656, 2.72434347711442386925162874595, 3.79830622205186791501117577874, 4.16510007625915039939928222095, 5.27000959062313134340258385299, 6.03678412878931232508658806687, 6.58278382469561048632165262703, 7.20300503359676768568111986003, 8.137877385419272587734483224647

Graph of the $Z$-function along the critical line