L(s) = 1 | + 2·2-s + 3·3-s + 3·4-s + 5-s + 6·6-s − 4·7-s + 4·8-s + 6·9-s + 2·10-s + 9·12-s + 4·13-s − 8·14-s + 3·15-s + 5·16-s + 12·18-s − 2·19-s + 3·20-s − 12·21-s + 3·23-s + 12·24-s + 8·26-s + 9·27-s − 12·28-s − 6·29-s + 6·30-s + 4·31-s + 6·32-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 1.73·3-s + 3/2·4-s + 0.447·5-s + 2.44·6-s − 1.51·7-s + 1.41·8-s + 2·9-s + 0.632·10-s + 2.59·12-s + 1.10·13-s − 2.13·14-s + 0.774·15-s + 5/4·16-s + 2.82·18-s − 0.458·19-s + 0.670·20-s − 2.61·21-s + 0.625·23-s + 2.44·24-s + 1.56·26-s + 1.73·27-s − 2.26·28-s − 1.11·29-s + 1.09·30-s + 0.718·31-s + 1.06·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 396900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 396900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(8.571061345\) |
\(L(\frac12)\) |
\(\approx\) |
\(8.571061345\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.55356176675862854782324236799, −10.46190338462439932277847286279, −9.975280292588606817397177220846, −9.445033729965284520195419349202, −9.024300868298668252337431464618, −8.791522890318179597822811015662, −8.140950325875924112646368212599, −7.67287270462553408894963336702, −7.14190411991154944198345905385, −6.77327113186497511185373468528, −6.19246350730544000035282143921, −6.03093633686515806676927030567, −5.26629747983766552686987831856, −4.66090084177411322117201729768, −3.86387976294663709543627960013, −3.77702980781685845132090211119, −3.15936419588161073453390506441, −2.74891981447445444763778048110, −2.15580621080420397833725850882, −1.36481776270053802479604340386,
1.36481776270053802479604340386, 2.15580621080420397833725850882, 2.74891981447445444763778048110, 3.15936419588161073453390506441, 3.77702980781685845132090211119, 3.86387976294663709543627960013, 4.66090084177411322117201729768, 5.26629747983766552686987831856, 6.03093633686515806676927030567, 6.19246350730544000035282143921, 6.77327113186497511185373468528, 7.14190411991154944198345905385, 7.67287270462553408894963336702, 8.140950325875924112646368212599, 8.791522890318179597822811015662, 9.024300868298668252337431464618, 9.445033729965284520195419349202, 9.975280292588606817397177220846, 10.46190338462439932277847286279, 10.55356176675862854782324236799