Properties

Label 630.2.i.d.151.1
Level $630$
Weight $2$
Character 630.151
Analytic conductor $5.031$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [630,2,Mod(121,630)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(630, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("630.121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,3,2,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 151.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 630.151
Dual form 630.2.i.d.121.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +(1.50000 - 0.866025i) q^{3} +1.00000 q^{4} +(0.500000 - 0.866025i) q^{5} +(1.50000 - 0.866025i) q^{6} +(-2.00000 - 1.73205i) q^{7} +1.00000 q^{8} +(1.50000 - 2.59808i) q^{9} +(0.500000 - 0.866025i) q^{10} +(1.50000 - 0.866025i) q^{12} +(2.00000 + 3.46410i) q^{13} +(-2.00000 - 1.73205i) q^{14} -1.73205i q^{15} +1.00000 q^{16} +(1.50000 - 2.59808i) q^{18} +(-1.00000 - 1.73205i) q^{19} +(0.500000 - 0.866025i) q^{20} +(-4.50000 - 0.866025i) q^{21} +(1.50000 - 2.59808i) q^{23} +(1.50000 - 0.866025i) q^{24} +(-0.500000 - 0.866025i) q^{25} +(2.00000 + 3.46410i) q^{26} -5.19615i q^{27} +(-2.00000 - 1.73205i) q^{28} +(-3.00000 + 5.19615i) q^{29} -1.73205i q^{30} +2.00000 q^{31} +1.00000 q^{32} +(-2.50000 + 0.866025i) q^{35} +(1.50000 - 2.59808i) q^{36} +(-1.00000 - 1.73205i) q^{37} +(-1.00000 - 1.73205i) q^{38} +(6.00000 + 3.46410i) q^{39} +(0.500000 - 0.866025i) q^{40} +(3.00000 + 5.19615i) q^{41} +(-4.50000 - 0.866025i) q^{42} +(-5.50000 + 9.52628i) q^{43} +(-1.50000 - 2.59808i) q^{45} +(1.50000 - 2.59808i) q^{46} +3.00000 q^{47} +(1.50000 - 0.866025i) q^{48} +(1.00000 + 6.92820i) q^{49} +(-0.500000 - 0.866025i) q^{50} +(2.00000 + 3.46410i) q^{52} +(-3.00000 + 5.19615i) q^{53} -5.19615i q^{54} +(-2.00000 - 1.73205i) q^{56} +(-3.00000 - 1.73205i) q^{57} +(-3.00000 + 5.19615i) q^{58} +12.0000 q^{59} -1.73205i q^{60} -7.00000 q^{61} +2.00000 q^{62} +(-7.50000 + 2.59808i) q^{63} +1.00000 q^{64} +4.00000 q^{65} -7.00000 q^{67} -5.19615i q^{69} +(-2.50000 + 0.866025i) q^{70} +(1.50000 - 2.59808i) q^{72} +(-1.00000 + 1.73205i) q^{73} +(-1.00000 - 1.73205i) q^{74} +(-1.50000 - 0.866025i) q^{75} +(-1.00000 - 1.73205i) q^{76} +(6.00000 + 3.46410i) q^{78} -4.00000 q^{79} +(0.500000 - 0.866025i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(3.00000 + 5.19615i) q^{82} +(6.00000 - 10.3923i) q^{83} +(-4.50000 - 0.866025i) q^{84} +(-5.50000 + 9.52628i) q^{86} +10.3923i q^{87} +(7.50000 + 12.9904i) q^{89} +(-1.50000 - 2.59808i) q^{90} +(2.00000 - 10.3923i) q^{91} +(1.50000 - 2.59808i) q^{92} +(3.00000 - 1.73205i) q^{93} +3.00000 q^{94} -2.00000 q^{95} +(1.50000 - 0.866025i) q^{96} +(5.00000 - 8.66025i) q^{97} +(1.00000 + 6.92820i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 3 q^{3} + 2 q^{4} + q^{5} + 3 q^{6} - 4 q^{7} + 2 q^{8} + 3 q^{9} + q^{10} + 3 q^{12} + 4 q^{13} - 4 q^{14} + 2 q^{16} + 3 q^{18} - 2 q^{19} + q^{20} - 9 q^{21} + 3 q^{23} + 3 q^{24}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.50000 0.866025i 0.866025 0.500000i
\(4\) 1.00000 0.500000
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) 1.50000 0.866025i 0.612372 0.353553i
\(7\) −2.00000 1.73205i −0.755929 0.654654i
\(8\) 1.00000 0.353553
\(9\) 1.50000 2.59808i 0.500000 0.866025i
\(10\) 0.500000 0.866025i 0.158114 0.273861i
\(11\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(12\) 1.50000 0.866025i 0.433013 0.250000i
\(13\) 2.00000 + 3.46410i 0.554700 + 0.960769i 0.997927 + 0.0643593i \(0.0205004\pi\)
−0.443227 + 0.896410i \(0.646166\pi\)
\(14\) −2.00000 1.73205i −0.534522 0.462910i
\(15\) 1.73205i 0.447214i
\(16\) 1.00000 0.250000
\(17\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) 1.50000 2.59808i 0.353553 0.612372i
\(19\) −1.00000 1.73205i −0.229416 0.397360i 0.728219 0.685344i \(-0.240348\pi\)
−0.957635 + 0.287984i \(0.907015\pi\)
\(20\) 0.500000 0.866025i 0.111803 0.193649i
\(21\) −4.50000 0.866025i −0.981981 0.188982i
\(22\) 0 0
\(23\) 1.50000 2.59808i 0.312772 0.541736i −0.666190 0.745782i \(-0.732076\pi\)
0.978961 + 0.204046i \(0.0654092\pi\)
\(24\) 1.50000 0.866025i 0.306186 0.176777i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 2.00000 + 3.46410i 0.392232 + 0.679366i
\(27\) 5.19615i 1.00000i
\(28\) −2.00000 1.73205i −0.377964 0.327327i
\(29\) −3.00000 + 5.19615i −0.557086 + 0.964901i 0.440652 + 0.897678i \(0.354747\pi\)
−0.997738 + 0.0672232i \(0.978586\pi\)
\(30\) 1.73205i 0.316228i
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 0 0
\(35\) −2.50000 + 0.866025i −0.422577 + 0.146385i
\(36\) 1.50000 2.59808i 0.250000 0.433013i
\(37\) −1.00000 1.73205i −0.164399 0.284747i 0.772043 0.635571i \(-0.219235\pi\)
−0.936442 + 0.350823i \(0.885902\pi\)
\(38\) −1.00000 1.73205i −0.162221 0.280976i
\(39\) 6.00000 + 3.46410i 0.960769 + 0.554700i
\(40\) 0.500000 0.866025i 0.0790569 0.136931i
\(41\) 3.00000 + 5.19615i 0.468521 + 0.811503i 0.999353 0.0359748i \(-0.0114536\pi\)
−0.530831 + 0.847477i \(0.678120\pi\)
\(42\) −4.50000 0.866025i −0.694365 0.133631i
\(43\) −5.50000 + 9.52628i −0.838742 + 1.45274i 0.0522047 + 0.998636i \(0.483375\pi\)
−0.890947 + 0.454108i \(0.849958\pi\)
\(44\) 0 0
\(45\) −1.50000 2.59808i −0.223607 0.387298i
\(46\) 1.50000 2.59808i 0.221163 0.383065i
\(47\) 3.00000 0.437595 0.218797 0.975770i \(-0.429787\pi\)
0.218797 + 0.975770i \(0.429787\pi\)
\(48\) 1.50000 0.866025i 0.216506 0.125000i
\(49\) 1.00000 + 6.92820i 0.142857 + 0.989743i
\(50\) −0.500000 0.866025i −0.0707107 0.122474i
\(51\) 0 0
\(52\) 2.00000 + 3.46410i 0.277350 + 0.480384i
\(53\) −3.00000 + 5.19615i −0.412082 + 0.713746i −0.995117 0.0987002i \(-0.968532\pi\)
0.583036 + 0.812447i \(0.301865\pi\)
\(54\) 5.19615i 0.707107i
\(55\) 0 0
\(56\) −2.00000 1.73205i −0.267261 0.231455i
\(57\) −3.00000 1.73205i −0.397360 0.229416i
\(58\) −3.00000 + 5.19615i −0.393919 + 0.682288i
\(59\) 12.0000 1.56227 0.781133 0.624364i \(-0.214642\pi\)
0.781133 + 0.624364i \(0.214642\pi\)
\(60\) 1.73205i 0.223607i
\(61\) −7.00000 −0.896258 −0.448129 0.893969i \(-0.647910\pi\)
−0.448129 + 0.893969i \(0.647910\pi\)
\(62\) 2.00000 0.254000
\(63\) −7.50000 + 2.59808i −0.944911 + 0.327327i
\(64\) 1.00000 0.125000
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) −7.00000 −0.855186 −0.427593 0.903971i \(-0.640638\pi\)
−0.427593 + 0.903971i \(0.640638\pi\)
\(68\) 0 0
\(69\) 5.19615i 0.625543i
\(70\) −2.50000 + 0.866025i −0.298807 + 0.103510i
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 1.50000 2.59808i 0.176777 0.306186i
\(73\) −1.00000 + 1.73205i −0.117041 + 0.202721i −0.918594 0.395203i \(-0.870674\pi\)
0.801553 + 0.597924i \(0.204008\pi\)
\(74\) −1.00000 1.73205i −0.116248 0.201347i
\(75\) −1.50000 0.866025i −0.173205 0.100000i
\(76\) −1.00000 1.73205i −0.114708 0.198680i
\(77\) 0 0
\(78\) 6.00000 + 3.46410i 0.679366 + 0.392232i
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0.500000 0.866025i 0.0559017 0.0968246i
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) 3.00000 + 5.19615i 0.331295 + 0.573819i
\(83\) 6.00000 10.3923i 0.658586 1.14070i −0.322396 0.946605i \(-0.604488\pi\)
0.980982 0.194099i \(-0.0621783\pi\)
\(84\) −4.50000 0.866025i −0.490990 0.0944911i
\(85\) 0 0
\(86\) −5.50000 + 9.52628i −0.593080 + 1.02725i
\(87\) 10.3923i 1.11417i
\(88\) 0 0
\(89\) 7.50000 + 12.9904i 0.794998 + 1.37698i 0.922840 + 0.385183i \(0.125862\pi\)
−0.127842 + 0.991795i \(0.540805\pi\)
\(90\) −1.50000 2.59808i −0.158114 0.273861i
\(91\) 2.00000 10.3923i 0.209657 1.08941i
\(92\) 1.50000 2.59808i 0.156386 0.270868i
\(93\) 3.00000 1.73205i 0.311086 0.179605i
\(94\) 3.00000 0.309426
\(95\) −2.00000 −0.205196
\(96\) 1.50000 0.866025i 0.153093 0.0883883i
\(97\) 5.00000 8.66025i 0.507673 0.879316i −0.492287 0.870433i \(-0.663839\pi\)
0.999961 0.00888289i \(-0.00282755\pi\)
\(98\) 1.00000 + 6.92820i 0.101015 + 0.699854i
\(99\) 0 0
\(100\) −0.500000 0.866025i −0.0500000 0.0866025i
\(101\) −1.50000 2.59808i −0.149256 0.258518i 0.781697 0.623658i \(-0.214354\pi\)
−0.930953 + 0.365140i \(0.881021\pi\)
\(102\) 0 0
\(103\) −8.50000 + 14.7224i −0.837530 + 1.45064i 0.0544240 + 0.998518i \(0.482668\pi\)
−0.891954 + 0.452126i \(0.850666\pi\)
\(104\) 2.00000 + 3.46410i 0.196116 + 0.339683i
\(105\) −3.00000 + 3.46410i −0.292770 + 0.338062i
\(106\) −3.00000 + 5.19615i −0.291386 + 0.504695i
\(107\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(108\) 5.19615i 0.500000i
\(109\) −1.00000 + 1.73205i −0.0957826 + 0.165900i −0.909935 0.414751i \(-0.863869\pi\)
0.814152 + 0.580651i \(0.197202\pi\)
\(110\) 0 0
\(111\) −3.00000 1.73205i −0.284747 0.164399i
\(112\) −2.00000 1.73205i −0.188982 0.163663i
\(113\) 3.00000 + 5.19615i 0.282216 + 0.488813i 0.971930 0.235269i \(-0.0755971\pi\)
−0.689714 + 0.724082i \(0.742264\pi\)
\(114\) −3.00000 1.73205i −0.280976 0.162221i
\(115\) −1.50000 2.59808i −0.139876 0.242272i
\(116\) −3.00000 + 5.19615i −0.278543 + 0.482451i
\(117\) 12.0000 1.10940
\(118\) 12.0000 1.10469
\(119\) 0 0
\(120\) 1.73205i 0.158114i
\(121\) 5.50000 9.52628i 0.500000 0.866025i
\(122\) −7.00000 −0.633750
\(123\) 9.00000 + 5.19615i 0.811503 + 0.468521i
\(124\) 2.00000 0.179605
\(125\) −1.00000 −0.0894427
\(126\) −7.50000 + 2.59808i −0.668153 + 0.231455i
\(127\) −13.0000 −1.15356 −0.576782 0.816898i \(-0.695692\pi\)
−0.576782 + 0.816898i \(0.695692\pi\)
\(128\) 1.00000 0.0883883
\(129\) 19.0526i 1.67748i
\(130\) 4.00000 0.350823
\(131\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(132\) 0 0
\(133\) −1.00000 + 5.19615i −0.0867110 + 0.450564i
\(134\) −7.00000 −0.604708
\(135\) −4.50000 2.59808i −0.387298 0.223607i
\(136\) 0 0
\(137\) −6.00000 10.3923i −0.512615 0.887875i −0.999893 0.0146279i \(-0.995344\pi\)
0.487278 0.873247i \(-0.337990\pi\)
\(138\) 5.19615i 0.442326i
\(139\) 2.00000 + 3.46410i 0.169638 + 0.293821i 0.938293 0.345843i \(-0.112407\pi\)
−0.768655 + 0.639664i \(0.779074\pi\)
\(140\) −2.50000 + 0.866025i −0.211289 + 0.0731925i
\(141\) 4.50000 2.59808i 0.378968 0.218797i
\(142\) 0 0
\(143\) 0 0
\(144\) 1.50000 2.59808i 0.125000 0.216506i
\(145\) 3.00000 + 5.19615i 0.249136 + 0.431517i
\(146\) −1.00000 + 1.73205i −0.0827606 + 0.143346i
\(147\) 7.50000 + 9.52628i 0.618590 + 0.785714i
\(148\) −1.00000 1.73205i −0.0821995 0.142374i
\(149\) −7.50000 + 12.9904i −0.614424 + 1.06421i 0.376061 + 0.926595i \(0.377278\pi\)
−0.990485 + 0.137619i \(0.956055\pi\)
\(150\) −1.50000 0.866025i −0.122474 0.0707107i
\(151\) −1.00000 1.73205i −0.0813788 0.140952i 0.822464 0.568818i \(-0.192599\pi\)
−0.903842 + 0.427865i \(0.859266\pi\)
\(152\) −1.00000 1.73205i −0.0811107 0.140488i
\(153\) 0 0
\(154\) 0 0
\(155\) 1.00000 1.73205i 0.0803219 0.139122i
\(156\) 6.00000 + 3.46410i 0.480384 + 0.277350i
\(157\) −22.0000 −1.75579 −0.877896 0.478852i \(-0.841053\pi\)
−0.877896 + 0.478852i \(0.841053\pi\)
\(158\) −4.00000 −0.318223
\(159\) 10.3923i 0.824163i
\(160\) 0.500000 0.866025i 0.0395285 0.0684653i
\(161\) −7.50000 + 2.59808i −0.591083 + 0.204757i
\(162\) −4.50000 7.79423i −0.353553 0.612372i
\(163\) −10.0000 17.3205i −0.783260 1.35665i −0.930033 0.367477i \(-0.880222\pi\)
0.146772 0.989170i \(-0.453112\pi\)
\(164\) 3.00000 + 5.19615i 0.234261 + 0.405751i
\(165\) 0 0
\(166\) 6.00000 10.3923i 0.465690 0.806599i
\(167\) 1.50000 + 2.59808i 0.116073 + 0.201045i 0.918208 0.396098i \(-0.129636\pi\)
−0.802135 + 0.597143i \(0.796303\pi\)
\(168\) −4.50000 0.866025i −0.347183 0.0668153i
\(169\) −1.50000 + 2.59808i −0.115385 + 0.199852i
\(170\) 0 0
\(171\) −6.00000 −0.458831
\(172\) −5.50000 + 9.52628i −0.419371 + 0.726372i
\(173\) 24.0000 1.82469 0.912343 0.409426i \(-0.134271\pi\)
0.912343 + 0.409426i \(0.134271\pi\)
\(174\) 10.3923i 0.787839i
\(175\) −0.500000 + 2.59808i −0.0377964 + 0.196396i
\(176\) 0 0
\(177\) 18.0000 10.3923i 1.35296 0.781133i
\(178\) 7.50000 + 12.9904i 0.562149 + 0.973670i
\(179\) 9.00000 15.5885i 0.672692 1.16514i −0.304446 0.952529i \(-0.598471\pi\)
0.977138 0.212607i \(-0.0681952\pi\)
\(180\) −1.50000 2.59808i −0.111803 0.193649i
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 2.00000 10.3923i 0.148250 0.770329i
\(183\) −10.5000 + 6.06218i −0.776182 + 0.448129i
\(184\) 1.50000 2.59808i 0.110581 0.191533i
\(185\) −2.00000 −0.147043
\(186\) 3.00000 1.73205i 0.219971 0.127000i
\(187\) 0 0
\(188\) 3.00000 0.218797
\(189\) −9.00000 + 10.3923i −0.654654 + 0.755929i
\(190\) −2.00000 −0.145095
\(191\) 18.0000 1.30243 0.651217 0.758891i \(-0.274259\pi\)
0.651217 + 0.758891i \(0.274259\pi\)
\(192\) 1.50000 0.866025i 0.108253 0.0625000i
\(193\) −22.0000 −1.58359 −0.791797 0.610784i \(-0.790854\pi\)
−0.791797 + 0.610784i \(0.790854\pi\)
\(194\) 5.00000 8.66025i 0.358979 0.621770i
\(195\) 6.00000 3.46410i 0.429669 0.248069i
\(196\) 1.00000 + 6.92820i 0.0714286 + 0.494872i
\(197\) −12.0000 −0.854965 −0.427482 0.904024i \(-0.640599\pi\)
−0.427482 + 0.904024i \(0.640599\pi\)
\(198\) 0 0
\(199\) 2.00000 3.46410i 0.141776 0.245564i −0.786389 0.617731i \(-0.788052\pi\)
0.928166 + 0.372168i \(0.121385\pi\)
\(200\) −0.500000 0.866025i −0.0353553 0.0612372i
\(201\) −10.5000 + 6.06218i −0.740613 + 0.427593i
\(202\) −1.50000 2.59808i −0.105540 0.182800i
\(203\) 15.0000 5.19615i 1.05279 0.364698i
\(204\) 0 0
\(205\) 6.00000 0.419058
\(206\) −8.50000 + 14.7224i −0.592223 + 1.02576i
\(207\) −4.50000 7.79423i −0.312772 0.541736i
\(208\) 2.00000 + 3.46410i 0.138675 + 0.240192i
\(209\) 0 0
\(210\) −3.00000 + 3.46410i −0.207020 + 0.239046i
\(211\) −4.00000 6.92820i −0.275371 0.476957i 0.694857 0.719148i \(-0.255467\pi\)
−0.970229 + 0.242190i \(0.922134\pi\)
\(212\) −3.00000 + 5.19615i −0.206041 + 0.356873i
\(213\) 0 0
\(214\) 0 0
\(215\) 5.50000 + 9.52628i 0.375097 + 0.649687i
\(216\) 5.19615i 0.353553i
\(217\) −4.00000 3.46410i −0.271538 0.235159i
\(218\) −1.00000 + 1.73205i −0.0677285 + 0.117309i
\(219\) 3.46410i 0.234082i
\(220\) 0 0
\(221\) 0 0
\(222\) −3.00000 1.73205i −0.201347 0.116248i
\(223\) 9.50000 16.4545i 0.636167 1.10187i −0.350100 0.936713i \(-0.613852\pi\)
0.986267 0.165161i \(-0.0528144\pi\)
\(224\) −2.00000 1.73205i −0.133631 0.115728i
\(225\) −3.00000 −0.200000
\(226\) 3.00000 + 5.19615i 0.199557 + 0.345643i
\(227\) −12.0000 20.7846i −0.796468 1.37952i −0.921903 0.387421i \(-0.873366\pi\)
0.125435 0.992102i \(-0.459967\pi\)
\(228\) −3.00000 1.73205i −0.198680 0.114708i
\(229\) −14.5000 + 25.1147i −0.958187 + 1.65963i −0.231287 + 0.972886i \(0.574293\pi\)
−0.726900 + 0.686743i \(0.759040\pi\)
\(230\) −1.50000 2.59808i −0.0989071 0.171312i
\(231\) 0 0
\(232\) −3.00000 + 5.19615i −0.196960 + 0.341144i
\(233\) −9.00000 15.5885i −0.589610 1.02123i −0.994283 0.106773i \(-0.965948\pi\)
0.404674 0.914461i \(-0.367385\pi\)
\(234\) 12.0000 0.784465
\(235\) 1.50000 2.59808i 0.0978492 0.169480i
\(236\) 12.0000 0.781133
\(237\) −6.00000 + 3.46410i −0.389742 + 0.225018i
\(238\) 0 0
\(239\) 12.0000 + 20.7846i 0.776215 + 1.34444i 0.934109 + 0.356988i \(0.116196\pi\)
−0.157893 + 0.987456i \(0.550470\pi\)
\(240\) 1.73205i 0.111803i
\(241\) 9.50000 + 16.4545i 0.611949 + 1.05993i 0.990912 + 0.134515i \(0.0429475\pi\)
−0.378963 + 0.925412i \(0.623719\pi\)
\(242\) 5.50000 9.52628i 0.353553 0.612372i
\(243\) −13.5000 7.79423i −0.866025 0.500000i
\(244\) −7.00000 −0.448129
\(245\) 6.50000 + 2.59808i 0.415270 + 0.165985i
\(246\) 9.00000 + 5.19615i 0.573819 + 0.331295i
\(247\) 4.00000 6.92820i 0.254514 0.440831i
\(248\) 2.00000 0.127000
\(249\) 20.7846i 1.31717i
\(250\) −1.00000 −0.0632456
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) −7.50000 + 2.59808i −0.472456 + 0.163663i
\(253\) 0 0
\(254\) −13.0000 −0.815693
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 9.00000 15.5885i 0.561405 0.972381i −0.435970 0.899961i \(-0.643595\pi\)
0.997374 0.0724199i \(-0.0230722\pi\)
\(258\) 19.0526i 1.18616i
\(259\) −1.00000 + 5.19615i −0.0621370 + 0.322873i
\(260\) 4.00000 0.248069
\(261\) 9.00000 + 15.5885i 0.557086 + 0.964901i
\(262\) 0 0
\(263\) −4.50000 7.79423i −0.277482 0.480613i 0.693276 0.720672i \(-0.256167\pi\)
−0.970758 + 0.240059i \(0.922833\pi\)
\(264\) 0 0
\(265\) 3.00000 + 5.19615i 0.184289 + 0.319197i
\(266\) −1.00000 + 5.19615i −0.0613139 + 0.318597i
\(267\) 22.5000 + 12.9904i 1.37698 + 0.794998i
\(268\) −7.00000 −0.427593
\(269\) 10.5000 18.1865i 0.640196 1.10885i −0.345192 0.938532i \(-0.612186\pi\)
0.985389 0.170321i \(-0.0544803\pi\)
\(270\) −4.50000 2.59808i −0.273861 0.158114i
\(271\) −10.0000 17.3205i −0.607457 1.05215i −0.991658 0.128897i \(-0.958856\pi\)
0.384201 0.923249i \(-0.374477\pi\)
\(272\) 0 0
\(273\) −6.00000 17.3205i −0.363137 1.04828i
\(274\) −6.00000 10.3923i −0.362473 0.627822i
\(275\) 0 0
\(276\) 5.19615i 0.312772i
\(277\) −16.0000 27.7128i −0.961347 1.66510i −0.719125 0.694881i \(-0.755457\pi\)
−0.242222 0.970221i \(-0.577876\pi\)
\(278\) 2.00000 + 3.46410i 0.119952 + 0.207763i
\(279\) 3.00000 5.19615i 0.179605 0.311086i
\(280\) −2.50000 + 0.866025i −0.149404 + 0.0517549i
\(281\) −10.5000 + 18.1865i −0.626377 + 1.08492i 0.361895 + 0.932219i \(0.382130\pi\)
−0.988273 + 0.152699i \(0.951204\pi\)
\(282\) 4.50000 2.59808i 0.267971 0.154713i
\(283\) 11.0000 0.653882 0.326941 0.945045i \(-0.393982\pi\)
0.326941 + 0.945045i \(0.393982\pi\)
\(284\) 0 0
\(285\) −3.00000 + 1.73205i −0.177705 + 0.102598i
\(286\) 0 0
\(287\) 3.00000 15.5885i 0.177084 0.920158i
\(288\) 1.50000 2.59808i 0.0883883 0.153093i
\(289\) 8.50000 + 14.7224i 0.500000 + 0.866025i
\(290\) 3.00000 + 5.19615i 0.176166 + 0.305129i
\(291\) 17.3205i 1.01535i
\(292\) −1.00000 + 1.73205i −0.0585206 + 0.101361i
\(293\) 15.0000 + 25.9808i 0.876309 + 1.51781i 0.855361 + 0.518032i \(0.173335\pi\)
0.0209480 + 0.999781i \(0.493332\pi\)
\(294\) 7.50000 + 9.52628i 0.437409 + 0.555584i
\(295\) 6.00000 10.3923i 0.349334 0.605063i
\(296\) −1.00000 1.73205i −0.0581238 0.100673i
\(297\) 0 0
\(298\) −7.50000 + 12.9904i −0.434463 + 0.752513i
\(299\) 12.0000 0.693978
\(300\) −1.50000 0.866025i −0.0866025 0.0500000i
\(301\) 27.5000 9.52628i 1.58507 0.549086i
\(302\) −1.00000 1.73205i −0.0575435 0.0996683i
\(303\) −4.50000 2.59808i −0.258518 0.149256i
\(304\) −1.00000 1.73205i −0.0573539 0.0993399i
\(305\) −3.50000 + 6.06218i −0.200409 + 0.347119i
\(306\) 0 0
\(307\) 20.0000 1.14146 0.570730 0.821138i \(-0.306660\pi\)
0.570730 + 0.821138i \(0.306660\pi\)
\(308\) 0 0
\(309\) 29.4449i 1.67506i
\(310\) 1.00000 1.73205i 0.0567962 0.0983739i
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 6.00000 + 3.46410i 0.339683 + 0.196116i
\(313\) 26.0000 1.46961 0.734803 0.678280i \(-0.237274\pi\)
0.734803 + 0.678280i \(0.237274\pi\)
\(314\) −22.0000 −1.24153
\(315\) −1.50000 + 7.79423i −0.0845154 + 0.439155i
\(316\) −4.00000 −0.225018
\(317\) −18.0000 −1.01098 −0.505490 0.862832i \(-0.668688\pi\)
−0.505490 + 0.862832i \(0.668688\pi\)
\(318\) 10.3923i 0.582772i
\(319\) 0 0
\(320\) 0.500000 0.866025i 0.0279508 0.0484123i
\(321\) 0 0
\(322\) −7.50000 + 2.59808i −0.417959 + 0.144785i
\(323\) 0 0
\(324\) −4.50000 7.79423i −0.250000 0.433013i
\(325\) 2.00000 3.46410i 0.110940 0.192154i
\(326\) −10.0000 17.3205i −0.553849 0.959294i
\(327\) 3.46410i 0.191565i
\(328\) 3.00000 + 5.19615i 0.165647 + 0.286910i
\(329\) −6.00000 5.19615i −0.330791 0.286473i
\(330\) 0 0
\(331\) 26.0000 1.42909 0.714545 0.699590i \(-0.246634\pi\)
0.714545 + 0.699590i \(0.246634\pi\)
\(332\) 6.00000 10.3923i 0.329293 0.570352i
\(333\) −6.00000 −0.328798
\(334\) 1.50000 + 2.59808i 0.0820763 + 0.142160i
\(335\) −3.50000 + 6.06218i −0.191225 + 0.331212i
\(336\) −4.50000 0.866025i −0.245495 0.0472456i
\(337\) −16.0000 27.7128i −0.871576 1.50961i −0.860366 0.509676i \(-0.829765\pi\)
−0.0112091 0.999937i \(-0.503568\pi\)
\(338\) −1.50000 + 2.59808i −0.0815892 + 0.141317i
\(339\) 9.00000 + 5.19615i 0.488813 + 0.282216i
\(340\) 0 0
\(341\) 0 0
\(342\) −6.00000 −0.324443
\(343\) 10.0000 15.5885i 0.539949 0.841698i
\(344\) −5.50000 + 9.52628i −0.296540 + 0.513623i
\(345\) −4.50000 2.59808i −0.242272 0.139876i
\(346\) 24.0000 1.29025
\(347\) 27.0000 1.44944 0.724718 0.689046i \(-0.241970\pi\)
0.724718 + 0.689046i \(0.241970\pi\)
\(348\) 10.3923i 0.557086i
\(349\) 3.50000 6.06218i 0.187351 0.324501i −0.757015 0.653397i \(-0.773343\pi\)
0.944366 + 0.328896i \(0.106677\pi\)
\(350\) −0.500000 + 2.59808i −0.0267261 + 0.138873i
\(351\) 18.0000 10.3923i 0.960769 0.554700i
\(352\) 0 0
\(353\) −12.0000 20.7846i −0.638696 1.10625i −0.985719 0.168397i \(-0.946141\pi\)
0.347024 0.937856i \(-0.387192\pi\)
\(354\) 18.0000 10.3923i 0.956689 0.552345i
\(355\) 0 0
\(356\) 7.50000 + 12.9904i 0.397499 + 0.688489i
\(357\) 0 0
\(358\) 9.00000 15.5885i 0.475665 0.823876i
\(359\) −3.00000 5.19615i −0.158334 0.274242i 0.775934 0.630814i \(-0.217279\pi\)
−0.934268 + 0.356572i \(0.883946\pi\)
\(360\) −1.50000 2.59808i −0.0790569 0.136931i
\(361\) 7.50000 12.9904i 0.394737 0.683704i
\(362\) 2.00000 0.105118
\(363\) 19.0526i 1.00000i
\(364\) 2.00000 10.3923i 0.104828 0.544705i
\(365\) 1.00000 + 1.73205i 0.0523424 + 0.0906597i
\(366\) −10.5000 + 6.06218i −0.548844 + 0.316875i
\(367\) −8.50000 14.7224i −0.443696 0.768505i 0.554264 0.832341i \(-0.313000\pi\)
−0.997960 + 0.0638362i \(0.979666\pi\)
\(368\) 1.50000 2.59808i 0.0781929 0.135434i
\(369\) 18.0000 0.937043
\(370\) −2.00000 −0.103975
\(371\) 15.0000 5.19615i 0.778761 0.269771i
\(372\) 3.00000 1.73205i 0.155543 0.0898027i
\(373\) −7.00000 + 12.1244i −0.362446 + 0.627775i −0.988363 0.152115i \(-0.951392\pi\)
0.625917 + 0.779890i \(0.284725\pi\)
\(374\) 0 0
\(375\) −1.50000 + 0.866025i −0.0774597 + 0.0447214i
\(376\) 3.00000 0.154713
\(377\) −24.0000 −1.23606
\(378\) −9.00000 + 10.3923i −0.462910 + 0.534522i
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) −2.00000 −0.102598
\(381\) −19.5000 + 11.2583i −0.999015 + 0.576782i
\(382\) 18.0000 0.920960
\(383\) 10.5000 18.1865i 0.536525 0.929288i −0.462563 0.886586i \(-0.653070\pi\)
0.999088 0.0427020i \(-0.0135966\pi\)
\(384\) 1.50000 0.866025i 0.0765466 0.0441942i
\(385\) 0 0
\(386\) −22.0000 −1.11977
\(387\) 16.5000 + 28.5788i 0.838742 + 1.45274i
\(388\) 5.00000 8.66025i 0.253837 0.439658i
\(389\) −13.5000 23.3827i −0.684477 1.18555i −0.973601 0.228257i \(-0.926697\pi\)
0.289124 0.957292i \(-0.406636\pi\)
\(390\) 6.00000 3.46410i 0.303822 0.175412i
\(391\) 0 0
\(392\) 1.00000 + 6.92820i 0.0505076 + 0.349927i
\(393\) 0 0
\(394\) −12.0000 −0.604551
\(395\) −2.00000 + 3.46410i −0.100631 + 0.174298i
\(396\) 0 0
\(397\) 14.0000 + 24.2487i 0.702640 + 1.21701i 0.967537 + 0.252731i \(0.0813288\pi\)
−0.264897 + 0.964277i \(0.585338\pi\)
\(398\) 2.00000 3.46410i 0.100251 0.173640i
\(399\) 3.00000 + 8.66025i 0.150188 + 0.433555i
\(400\) −0.500000 0.866025i −0.0250000 0.0433013i
\(401\) −7.50000 + 12.9904i −0.374532 + 0.648709i −0.990257 0.139253i \(-0.955530\pi\)
0.615725 + 0.787961i \(0.288863\pi\)
\(402\) −10.5000 + 6.06218i −0.523692 + 0.302354i
\(403\) 4.00000 + 6.92820i 0.199254 + 0.345118i
\(404\) −1.50000 2.59808i −0.0746278 0.129259i
\(405\) −9.00000 −0.447214
\(406\) 15.0000 5.19615i 0.744438 0.257881i
\(407\) 0 0
\(408\) 0 0
\(409\) −1.00000 −0.0494468 −0.0247234 0.999694i \(-0.507871\pi\)
−0.0247234 + 0.999694i \(0.507871\pi\)
\(410\) 6.00000 0.296319
\(411\) −18.0000 10.3923i −0.887875 0.512615i
\(412\) −8.50000 + 14.7224i −0.418765 + 0.725322i
\(413\) −24.0000 20.7846i −1.18096 1.02274i
\(414\) −4.50000 7.79423i −0.221163 0.383065i
\(415\) −6.00000 10.3923i −0.294528 0.510138i
\(416\) 2.00000 + 3.46410i 0.0980581 + 0.169842i
\(417\) 6.00000 + 3.46410i 0.293821 + 0.169638i
\(418\) 0 0
\(419\) −18.0000 31.1769i −0.879358 1.52309i −0.852047 0.523465i \(-0.824639\pi\)
−0.0273103 0.999627i \(-0.508694\pi\)
\(420\) −3.00000 + 3.46410i −0.146385 + 0.169031i
\(421\) −8.50000 + 14.7224i −0.414265 + 0.717527i −0.995351 0.0963145i \(-0.969295\pi\)
0.581086 + 0.813842i \(0.302628\pi\)
\(422\) −4.00000 6.92820i −0.194717 0.337260i
\(423\) 4.50000 7.79423i 0.218797 0.378968i
\(424\) −3.00000 + 5.19615i −0.145693 + 0.252347i
\(425\) 0 0
\(426\) 0 0
\(427\) 14.0000 + 12.1244i 0.677507 + 0.586739i
\(428\) 0 0
\(429\) 0 0
\(430\) 5.50000 + 9.52628i 0.265234 + 0.459398i
\(431\) −15.0000 + 25.9808i −0.722525 + 1.25145i 0.237460 + 0.971397i \(0.423685\pi\)
−0.959985 + 0.280052i \(0.909648\pi\)
\(432\) 5.19615i 0.250000i
\(433\) −4.00000 −0.192228 −0.0961139 0.995370i \(-0.530641\pi\)
−0.0961139 + 0.995370i \(0.530641\pi\)
\(434\) −4.00000 3.46410i −0.192006 0.166282i
\(435\) 9.00000 + 5.19615i 0.431517 + 0.249136i
\(436\) −1.00000 + 1.73205i −0.0478913 + 0.0829502i
\(437\) −6.00000 −0.287019
\(438\) 3.46410i 0.165521i
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 0 0
\(441\) 19.5000 + 7.79423i 0.928571 + 0.371154i
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) −3.00000 1.73205i −0.142374 0.0821995i
\(445\) 15.0000 0.711068
\(446\) 9.50000 16.4545i 0.449838 0.779142i
\(447\) 25.9808i 1.22885i
\(448\) −2.00000 1.73205i −0.0944911 0.0818317i
\(449\) 15.0000 0.707894 0.353947 0.935266i \(-0.384839\pi\)
0.353947 + 0.935266i \(0.384839\pi\)
\(450\) −3.00000 −0.141421
\(451\) 0 0
\(452\) 3.00000 + 5.19615i 0.141108 + 0.244406i
\(453\) −3.00000 1.73205i −0.140952 0.0813788i
\(454\) −12.0000 20.7846i −0.563188 0.975470i
\(455\) −8.00000 6.92820i −0.375046 0.324799i
\(456\) −3.00000 1.73205i −0.140488 0.0811107i
\(457\) 26.0000 1.21623 0.608114 0.793849i \(-0.291926\pi\)
0.608114 + 0.793849i \(0.291926\pi\)
\(458\) −14.5000 + 25.1147i −0.677541 + 1.17353i
\(459\) 0 0
\(460\) −1.50000 2.59808i −0.0699379 0.121136i
\(461\) −13.5000 + 23.3827i −0.628758 + 1.08904i 0.359044 + 0.933321i \(0.383103\pi\)
−0.987801 + 0.155719i \(0.950230\pi\)
\(462\) 0 0
\(463\) −2.50000 4.33013i −0.116185 0.201238i 0.802068 0.597233i \(-0.203733\pi\)
−0.918253 + 0.395995i \(0.870400\pi\)
\(464\) −3.00000 + 5.19615i −0.139272 + 0.241225i
\(465\) 3.46410i 0.160644i
\(466\) −9.00000 15.5885i −0.416917 0.722121i
\(467\) −7.50000 12.9904i −0.347059 0.601123i 0.638667 0.769483i \(-0.279486\pi\)
−0.985726 + 0.168360i \(0.946153\pi\)
\(468\) 12.0000 0.554700
\(469\) 14.0000 + 12.1244i 0.646460 + 0.559851i
\(470\) 1.50000 2.59808i 0.0691898 0.119840i
\(471\) −33.0000 + 19.0526i −1.52056 + 0.877896i
\(472\) 12.0000 0.552345
\(473\) 0 0
\(474\) −6.00000 + 3.46410i −0.275589 + 0.159111i
\(475\) −1.00000 + 1.73205i −0.0458831 + 0.0794719i
\(476\) 0 0
\(477\) 9.00000 + 15.5885i 0.412082 + 0.713746i
\(478\) 12.0000 + 20.7846i 0.548867 + 0.950666i
\(479\) −9.00000 15.5885i −0.411220 0.712255i 0.583803 0.811895i \(-0.301564\pi\)
−0.995023 + 0.0996406i \(0.968231\pi\)
\(480\) 1.73205i 0.0790569i
\(481\) 4.00000 6.92820i 0.182384 0.315899i
\(482\) 9.50000 + 16.4545i 0.432713 + 0.749481i
\(483\) −9.00000 + 10.3923i −0.409514 + 0.472866i
\(484\) 5.50000 9.52628i 0.250000 0.433013i
\(485\) −5.00000 8.66025i −0.227038 0.393242i
\(486\) −13.5000 7.79423i −0.612372 0.353553i
\(487\) −10.0000 + 17.3205i −0.453143 + 0.784867i −0.998579 0.0532853i \(-0.983031\pi\)
0.545436 + 0.838152i \(0.316364\pi\)
\(488\) −7.00000 −0.316875
\(489\) −30.0000 17.3205i −1.35665 0.783260i
\(490\) 6.50000 + 2.59808i 0.293640 + 0.117369i
\(491\) −6.00000 10.3923i −0.270776 0.468998i 0.698285 0.715820i \(-0.253947\pi\)
−0.969061 + 0.246822i \(0.920614\pi\)
\(492\) 9.00000 + 5.19615i 0.405751 + 0.234261i
\(493\) 0 0
\(494\) 4.00000 6.92820i 0.179969 0.311715i
\(495\) 0 0
\(496\) 2.00000 0.0898027
\(497\) 0 0
\(498\) 20.7846i 0.931381i
\(499\) 14.0000 24.2487i 0.626726 1.08552i −0.361478 0.932381i \(-0.617728\pi\)
0.988204 0.153141i \(-0.0489388\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 4.50000 + 2.59808i 0.201045 + 0.116073i
\(502\) −12.0000 −0.535586
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) −7.50000 + 2.59808i −0.334077 + 0.115728i
\(505\) −3.00000 −0.133498
\(506\) 0 0
\(507\) 5.19615i 0.230769i
\(508\) −13.0000 −0.576782
\(509\) 9.00000 15.5885i 0.398918 0.690946i −0.594675 0.803966i \(-0.702719\pi\)
0.993593 + 0.113020i \(0.0360525\pi\)
\(510\) 0 0
\(511\) 5.00000 1.73205i 0.221187 0.0766214i
\(512\) 1.00000 0.0441942
\(513\) −9.00000 + 5.19615i −0.397360 + 0.229416i
\(514\) 9.00000 15.5885i 0.396973 0.687577i
\(515\) 8.50000 + 14.7224i 0.374555 + 0.648748i
\(516\) 19.0526i 0.838742i
\(517\) 0 0
\(518\) −1.00000 + 5.19615i −0.0439375 + 0.228306i
\(519\) 36.0000 20.7846i 1.58022 0.912343i
\(520\) 4.00000 0.175412
\(521\) −13.5000 + 23.3827i −0.591446 + 1.02441i 0.402592 + 0.915379i \(0.368109\pi\)
−0.994038 + 0.109035i \(0.965224\pi\)
\(522\) 9.00000 + 15.5885i 0.393919 + 0.682288i
\(523\) −14.5000 25.1147i −0.634041 1.09819i −0.986718 0.162446i \(-0.948062\pi\)
0.352677 0.935745i \(-0.385272\pi\)
\(524\) 0 0
\(525\) 1.50000 + 4.33013i 0.0654654 + 0.188982i
\(526\) −4.50000 7.79423i −0.196209 0.339845i
\(527\) 0 0
\(528\) 0 0
\(529\) 7.00000 + 12.1244i 0.304348 + 0.527146i
\(530\) 3.00000 + 5.19615i 0.130312 + 0.225706i
\(531\) 18.0000 31.1769i 0.781133 1.35296i
\(532\) −1.00000 + 5.19615i −0.0433555 + 0.225282i
\(533\) −12.0000 + 20.7846i −0.519778 + 0.900281i
\(534\) 22.5000 + 12.9904i 0.973670 + 0.562149i
\(535\) 0 0
\(536\) −7.00000 −0.302354
\(537\) 31.1769i 1.34538i
\(538\) 10.5000 18.1865i 0.452687 0.784077i
\(539\) 0 0
\(540\) −4.50000 2.59808i −0.193649 0.111803i
\(541\) 12.5000 + 21.6506i 0.537417 + 0.930834i 0.999042 + 0.0437584i \(0.0139332\pi\)
−0.461625 + 0.887075i \(0.652733\pi\)
\(542\) −10.0000 17.3205i −0.429537 0.743980i
\(543\) 3.00000 1.73205i 0.128742 0.0743294i
\(544\) 0 0
\(545\) 1.00000 + 1.73205i 0.0428353 + 0.0741929i
\(546\) −6.00000 17.3205i −0.256776 0.741249i
\(547\) −4.00000 + 6.92820i −0.171028 + 0.296229i −0.938779 0.344519i \(-0.888042\pi\)
0.767752 + 0.640747i \(0.221375\pi\)
\(548\) −6.00000 10.3923i −0.256307 0.443937i
\(549\) −10.5000 + 18.1865i −0.448129 + 0.776182i
\(550\) 0 0
\(551\) 12.0000 0.511217
\(552\) 5.19615i 0.221163i
\(553\) 8.00000 + 6.92820i 0.340195 + 0.294617i
\(554\) −16.0000 27.7128i −0.679775 1.17740i
\(555\) −3.00000 + 1.73205i −0.127343 + 0.0735215i
\(556\) 2.00000 + 3.46410i 0.0848189 + 0.146911i
\(557\) −3.00000 + 5.19615i −0.127114 + 0.220168i −0.922557 0.385860i \(-0.873905\pi\)
0.795443 + 0.606028i \(0.207238\pi\)
\(558\) 3.00000 5.19615i 0.127000 0.219971i
\(559\) −44.0000 −1.86100
\(560\) −2.50000 + 0.866025i −0.105644 + 0.0365963i
\(561\) 0 0
\(562\) −10.5000 + 18.1865i −0.442916 + 0.767153i
\(563\) −9.00000 −0.379305 −0.189652 0.981851i \(-0.560736\pi\)
−0.189652 + 0.981851i \(0.560736\pi\)
\(564\) 4.50000 2.59808i 0.189484 0.109399i
\(565\) 6.00000 0.252422
\(566\) 11.0000 0.462364
\(567\) −4.50000 + 23.3827i −0.188982 + 0.981981i
\(568\) 0 0
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) −3.00000 + 1.73205i −0.125656 + 0.0725476i
\(571\) 32.0000 1.33916 0.669579 0.742741i \(-0.266474\pi\)
0.669579 + 0.742741i \(0.266474\pi\)
\(572\) 0 0
\(573\) 27.0000 15.5885i 1.12794 0.651217i
\(574\) 3.00000 15.5885i 0.125218 0.650650i
\(575\) −3.00000 −0.125109
\(576\) 1.50000 2.59808i 0.0625000 0.108253i
\(577\) −10.0000 + 17.3205i −0.416305 + 0.721062i −0.995565 0.0940813i \(-0.970009\pi\)
0.579259 + 0.815144i \(0.303342\pi\)
\(578\) 8.50000 + 14.7224i 0.353553 + 0.612372i
\(579\) −33.0000 + 19.0526i −1.37143 + 0.791797i
\(580\) 3.00000 + 5.19615i 0.124568 + 0.215758i
\(581\) −30.0000 + 10.3923i −1.24461 + 0.431145i
\(582\) 17.3205i 0.717958i
\(583\) 0 0
\(584\) −1.00000 + 1.73205i −0.0413803 + 0.0716728i
\(585\) 6.00000 10.3923i 0.248069 0.429669i
\(586\) 15.0000 + 25.9808i 0.619644 + 1.07326i
\(587\) −22.5000 + 38.9711i −0.928674 + 1.60851i −0.143132 + 0.989704i \(0.545717\pi\)
−0.785543 + 0.618808i \(0.787616\pi\)
\(588\) 7.50000 + 9.52628i 0.309295 + 0.392857i
\(589\) −2.00000 3.46410i −0.0824086 0.142736i
\(590\) 6.00000 10.3923i 0.247016 0.427844i
\(591\) −18.0000 + 10.3923i −0.740421 + 0.427482i
\(592\) −1.00000 1.73205i −0.0410997 0.0711868i
\(593\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −7.50000 + 12.9904i −0.307212 + 0.532107i
\(597\) 6.92820i 0.283552i
\(598\) 12.0000 0.490716
\(599\) 6.00000 0.245153 0.122577 0.992459i \(-0.460884\pi\)
0.122577 + 0.992459i \(0.460884\pi\)
\(600\) −1.50000 0.866025i −0.0612372 0.0353553i
\(601\) 5.00000 8.66025i 0.203954 0.353259i −0.745845 0.666120i \(-0.767954\pi\)
0.949799 + 0.312861i \(0.101287\pi\)
\(602\) 27.5000 9.52628i 1.12082 0.388262i
\(603\) −10.5000 + 18.1865i −0.427593 + 0.740613i
\(604\) −1.00000 1.73205i −0.0406894 0.0704761i
\(605\) −5.50000 9.52628i −0.223607 0.387298i
\(606\) −4.50000 2.59808i −0.182800 0.105540i
\(607\) −16.0000 + 27.7128i −0.649420 + 1.12483i 0.333842 + 0.942629i \(0.391655\pi\)
−0.983262 + 0.182199i \(0.941678\pi\)
\(608\) −1.00000 1.73205i −0.0405554 0.0702439i
\(609\) 18.0000 20.7846i 0.729397 0.842235i
\(610\) −3.50000 + 6.06218i −0.141711 + 0.245450i
\(611\) 6.00000 + 10.3923i 0.242734 + 0.420428i
\(612\) 0 0
\(613\) −19.0000 + 32.9090i −0.767403 + 1.32918i 0.171564 + 0.985173i \(0.445118\pi\)
−0.938967 + 0.344008i \(0.888215\pi\)
\(614\) 20.0000 0.807134
\(615\) 9.00000 5.19615i 0.362915 0.209529i
\(616\) 0 0
\(617\) 3.00000 + 5.19615i 0.120775 + 0.209189i 0.920074 0.391745i \(-0.128129\pi\)
−0.799298 + 0.600935i \(0.794795\pi\)
\(618\) 29.4449i 1.18445i
\(619\) 5.00000 + 8.66025i 0.200967 + 0.348085i 0.948840 0.315757i \(-0.102258\pi\)
−0.747873 + 0.663842i \(0.768925\pi\)
\(620\) 1.00000 1.73205i 0.0401610 0.0695608i
\(621\) −13.5000 7.79423i −0.541736 0.312772i
\(622\) 0 0
\(623\) 7.50000 38.9711i 0.300481 1.56135i
\(624\) 6.00000 + 3.46410i 0.240192 + 0.138675i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 26.0000 1.03917
\(627\) 0 0
\(628\) −22.0000 −0.877896
\(629\) 0 0
\(630\) −1.50000 + 7.79423i −0.0597614 + 0.310530i
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) −4.00000 −0.159111
\(633\) −12.0000 6.92820i −0.476957 0.275371i
\(634\) −18.0000 −0.714871
\(635\) −6.50000 + 11.2583i −0.257945 + 0.446773i
\(636\) 10.3923i 0.412082i
\(637\) −22.0000 + 17.3205i −0.871672 + 0.686264i
\(638\) 0 0
\(639\) 0 0
\(640\) 0.500000 0.866025i 0.0197642 0.0342327i
\(641\) 7.50000 + 12.9904i 0.296232 + 0.513089i 0.975271 0.221013i \(-0.0709364\pi\)
−0.679039 + 0.734103i \(0.737603\pi\)
\(642\) 0 0
\(643\) 21.5000 + 37.2391i 0.847877 + 1.46857i 0.883099 + 0.469187i \(0.155453\pi\)
−0.0352216 + 0.999380i \(0.511214\pi\)
\(644\) −7.50000 + 2.59808i −0.295541 + 0.102379i
\(645\) 16.5000 + 9.52628i 0.649687 + 0.375097i
\(646\) 0 0
\(647\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(648\) −4.50000 7.79423i −0.176777 0.306186i
\(649\) 0 0
\(650\) 2.00000 3.46410i 0.0784465 0.135873i
\(651\) −9.00000 1.73205i −0.352738 0.0678844i
\(652\) −10.0000 17.3205i −0.391630 0.678323i
\(653\) −15.0000 + 25.9808i −0.586995 + 1.01671i 0.407628 + 0.913148i \(0.366356\pi\)
−0.994623 + 0.103558i \(0.966977\pi\)
\(654\) 3.46410i 0.135457i
\(655\) 0 0
\(656\) 3.00000 + 5.19615i 0.117130 + 0.202876i
\(657\) 3.00000 + 5.19615i 0.117041 + 0.202721i
\(658\) −6.00000 5.19615i −0.233904 0.202567i
\(659\) −12.0000 + 20.7846i −0.467454 + 0.809653i −0.999309 0.0371821i \(-0.988162\pi\)
0.531855 + 0.846836i \(0.321495\pi\)
\(660\) 0 0
\(661\) 5.00000 0.194477 0.0972387 0.995261i \(-0.468999\pi\)
0.0972387 + 0.995261i \(0.468999\pi\)
\(662\) 26.0000 1.01052
\(663\) 0 0
\(664\) 6.00000 10.3923i 0.232845 0.403300i
\(665\) 4.00000 + 3.46410i 0.155113 + 0.134332i
\(666\) −6.00000 −0.232495
\(667\) 9.00000 + 15.5885i 0.348481 + 0.603587i
\(668\) 1.50000 + 2.59808i 0.0580367 + 0.100523i
\(669\) 32.9090i 1.27233i
\(670\) −3.50000 + 6.06218i −0.135217 + 0.234202i
\(671\) 0 0
\(672\) −4.50000 0.866025i −0.173591 0.0334077i
\(673\) 14.0000 24.2487i 0.539660 0.934719i −0.459262 0.888301i \(-0.651886\pi\)
0.998922 0.0464181i \(-0.0147807\pi\)
\(674\) −16.0000 27.7128i −0.616297 1.06746i
\(675\) −4.50000 + 2.59808i −0.173205 + 0.100000i
\(676\) −1.50000 + 2.59808i −0.0576923 + 0.0999260i
\(677\) −12.0000 −0.461197 −0.230599 0.973049i \(-0.574068\pi\)
−0.230599 + 0.973049i \(0.574068\pi\)
\(678\) 9.00000 + 5.19615i 0.345643 + 0.199557i
\(679\) −25.0000 + 8.66025i −0.959412 + 0.332350i
\(680\) 0 0
\(681\) −36.0000 20.7846i −1.37952 0.796468i
\(682\) 0 0
\(683\) −25.5000 + 44.1673i −0.975730 + 1.69001i −0.298227 + 0.954495i \(0.596395\pi\)
−0.677503 + 0.735520i \(0.736938\pi\)
\(684\) −6.00000 −0.229416
\(685\) −12.0000 −0.458496
\(686\) 10.0000 15.5885i 0.381802 0.595170i
\(687\) 50.2295i 1.91637i
\(688\) −5.50000 + 9.52628i −0.209686 + 0.363186i
\(689\) −24.0000 −0.914327
\(690\) −4.50000 2.59808i −0.171312 0.0989071i
\(691\) −46.0000 −1.74992 −0.874961 0.484193i \(-0.839113\pi\)
−0.874961 + 0.484193i \(0.839113\pi\)
\(692\) 24.0000 0.912343
\(693\) 0 0
\(694\) 27.0000 1.02491
\(695\) 4.00000 0.151729
\(696\) 10.3923i 0.393919i
\(697\) 0 0
\(698\) 3.50000 6.06218i 0.132477 0.229457i
\(699\) −27.0000 15.5885i −1.02123 0.589610i
\(700\) −0.500000 + 2.59808i −0.0188982 + 0.0981981i
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) 18.0000 10.3923i 0.679366 0.392232i
\(703\) −2.00000 + 3.46410i −0.0754314 + 0.130651i
\(704\) 0 0
\(705\) 5.19615i 0.195698i
\(706\) −12.0000 20.7846i −0.451626 0.782239i
\(707\) −1.50000 + 7.79423i −0.0564133 + 0.293132i
\(708\) 18.0000 10.3923i 0.676481 0.390567i
\(709\) −19.0000 −0.713560 −0.356780 0.934188i \(-0.616125\pi\)
−0.356780 + 0.934188i \(0.616125\pi\)
\(710\) 0 0
\(711\) −6.00000 + 10.3923i −0.225018 + 0.389742i
\(712\) 7.50000 + 12.9904i 0.281074 + 0.486835i
\(713\) 3.00000 5.19615i 0.112351 0.194597i
\(714\) 0 0
\(715\) 0 0
\(716\) 9.00000 15.5885i 0.336346 0.582568i
\(717\) 36.0000 + 20.7846i 1.34444 + 0.776215i
\(718\) −3.00000 5.19615i −0.111959 0.193919i
\(719\) 15.0000 + 25.9808i 0.559406 + 0.968919i 0.997546 + 0.0700124i \(0.0223039\pi\)
−0.438141 + 0.898906i \(0.644363\pi\)
\(720\) −1.50000 2.59808i −0.0559017 0.0968246i
\(721\) 42.5000 14.7224i 1.58278 0.548292i
\(722\) 7.50000 12.9904i 0.279121 0.483452i
\(723\) 28.5000 + 16.4545i 1.05993 + 0.611949i
\(724\) 2.00000 0.0743294
\(725\) 6.00000 0.222834
\(726\) 19.0526i 0.707107i
\(727\) 3.50000 6.06218i 0.129808 0.224834i −0.793794 0.608186i \(-0.791897\pi\)
0.923602 + 0.383353i \(0.125231\pi\)
\(728\) 2.00000 10.3923i 0.0741249 0.385164i
\(729\) −27.0000 −1.00000
\(730\) 1.00000 + 1.73205i 0.0370117 + 0.0641061i
\(731\) 0 0
\(732\) −10.5000 + 6.06218i −0.388091 + 0.224065i
\(733\) −4.00000 + 6.92820i −0.147743 + 0.255899i −0.930393 0.366563i \(-0.880534\pi\)
0.782650 + 0.622462i \(0.213868\pi\)
\(734\) −8.50000 14.7224i −0.313741 0.543415i
\(735\) 12.0000 1.73205i 0.442627 0.0638877i
\(736\) 1.50000 2.59808i 0.0552907 0.0957664i
\(737\) 0 0
\(738\) 18.0000 0.662589
\(739\) −16.0000 + 27.7128i −0.588570 + 1.01943i 0.405851 + 0.913939i \(0.366975\pi\)
−0.994420 + 0.105493i \(0.966358\pi\)
\(740\) −2.00000 −0.0735215
\(741\) 13.8564i 0.509028i
\(742\) 15.0000 5.19615i 0.550667 0.190757i
\(743\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(744\) 3.00000 1.73205i 0.109985 0.0635001i
\(745\) 7.50000 + 12.9904i 0.274779 + 0.475931i
\(746\) −7.00000 + 12.1244i −0.256288 + 0.443904i
\(747\) −18.0000 31.1769i −0.658586 1.14070i
\(748\) 0 0
\(749\) 0 0
\(750\) −1.50000 + 0.866025i −0.0547723 + 0.0316228i
\(751\) 11.0000 19.0526i 0.401396 0.695238i −0.592499 0.805571i \(-0.701859\pi\)
0.993895 + 0.110333i \(0.0351919\pi\)
\(752\) 3.00000 0.109399
\(753\) −18.0000 + 10.3923i −0.655956 + 0.378717i
\(754\) −24.0000 −0.874028
\(755\) −2.00000 −0.0727875
\(756\) −9.00000 + 10.3923i −0.327327 + 0.377964i
\(757\) 14.0000 0.508839 0.254419 0.967094i \(-0.418116\pi\)
0.254419 + 0.967094i \(0.418116\pi\)
\(758\) −4.00000 −0.145287
\(759\) 0 0
\(760\) −2.00000 −0.0725476
\(761\) −7.50000 + 12.9904i −0.271875 + 0.470901i −0.969342 0.245716i \(-0.920977\pi\)
0.697467 + 0.716617i \(0.254310\pi\)
\(762\) −19.5000 + 11.2583i −0.706410 + 0.407846i
\(763\) 5.00000 1.73205i 0.181012 0.0627044i
\(764\) 18.0000 0.651217
\(765\) 0 0
\(766\) 10.5000 18.1865i 0.379380 0.657106i
\(767\) 24.0000 + 41.5692i 0.866590 + 1.50098i
\(768\) 1.50000 0.866025i 0.0541266 0.0312500i
\(769\) −2.50000 4.33013i −0.0901523 0.156148i 0.817423 0.576038i \(-0.195402\pi\)
−0.907575 + 0.419890i \(0.862069\pi\)
\(770\) 0 0
\(771\) 31.1769i 1.12281i
\(772\) −22.0000 −0.791797
\(773\) 9.00000 15.5885i 0.323708 0.560678i −0.657542 0.753418i \(-0.728404\pi\)
0.981250 + 0.192740i \(0.0617373\pi\)
\(774\) 16.5000 + 28.5788i 0.593080 + 1.02725i
\(775\) −1.00000 1.73205i −0.0359211 0.0622171i
\(776\) 5.00000 8.66025i 0.179490 0.310885i
\(777\) 3.00000 + 8.66025i 0.107624 + 0.310685i
\(778\) −13.5000 23.3827i −0.483998 0.838310i
\(779\) 6.00000 10.3923i 0.214972 0.372343i
\(780\) 6.00000 3.46410i 0.214834 0.124035i
\(781\) 0 0
\(782\) 0 0
\(783\) 27.0000 + 15.5885i 0.964901 + 0.557086i
\(784\) 1.00000 + 6.92820i 0.0357143 + 0.247436i
\(785\) −11.0000 + 19.0526i −0.392607 + 0.680015i
\(786\) 0 0
\(787\) −1.00000 −0.0356462 −0.0178231 0.999841i \(-0.505674\pi\)
−0.0178231 + 0.999841i \(0.505674\pi\)
\(788\) −12.0000 −0.427482
\(789\) −13.5000 7.79423i −0.480613 0.277482i
\(790\) −2.00000 + 3.46410i −0.0711568 + 0.123247i
\(791\) 3.00000 15.5885i 0.106668 0.554262i
\(792\) 0 0
\(793\) −14.0000 24.2487i −0.497155 0.861097i
\(794\) 14.0000 + 24.2487i 0.496841 + 0.860555i
\(795\) 9.00000 + 5.19615i 0.319197 + 0.184289i
\(796\) 2.00000 3.46410i 0.0708881 0.122782i
\(797\) −9.00000 15.5885i −0.318796 0.552171i 0.661441 0.749997i \(-0.269945\pi\)
−0.980237 + 0.197826i \(0.936612\pi\)
\(798\) 3.00000 + 8.66025i 0.106199 + 0.306570i
\(799\) 0 0
\(800\) −0.500000 0.866025i −0.0176777 0.0306186i
\(801\) 45.0000 1.59000
\(802\) −7.50000 + 12.9904i −0.264834 + 0.458706i
\(803\) 0 0
\(804\) −10.5000 + 6.06218i −0.370306 + 0.213797i
\(805\) −1.50000 + 7.79423i −0.0528681 + 0.274710i
\(806\) 4.00000 + 6.92820i 0.140894 + 0.244036i
\(807\) 36.3731i 1.28039i
\(808\) −1.50000 2.59808i −0.0527698 0.0914000i
\(809\) 19.5000 33.7750i 0.685583 1.18747i −0.287670 0.957730i \(-0.592880\pi\)
0.973253 0.229736i \(-0.0737862\pi\)
\(810\) −9.00000 −0.316228
\(811\) −16.0000 −0.561836 −0.280918 0.959732i \(-0.590639\pi\)
−0.280918 + 0.959732i \(0.590639\pi\)
\(812\) 15.0000 5.19615i 0.526397 0.182349i
\(813\) −30.0000 17.3205i −1.05215 0.607457i
\(814\) 0 0
\(815\) −20.0000 −0.700569
\(816\) 0 0
\(817\) 22.0000 0.769683
\(818\) −1.00000 −0.0349642
\(819\) −24.0000 20.7846i −0.838628 0.726273i
\(820\) 6.00000 0.209529
\(821\) −3.00000 −0.104701 −0.0523504 0.998629i \(-0.516671\pi\)
−0.0523504 + 0.998629i \(0.516671\pi\)
\(822\) −18.0000 10.3923i −0.627822 0.362473i
\(823\) 8.00000 0.278862 0.139431 0.990232i \(-0.455473\pi\)
0.139431 + 0.990232i \(0.455473\pi\)
\(824\) −8.50000 + 14.7224i −0.296112 + 0.512880i
\(825\) 0 0
\(826\) −24.0000 20.7846i −0.835067 0.723189i
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) −4.50000 7.79423i −0.156386 0.270868i
\(829\) 12.5000 21.6506i 0.434143 0.751958i −0.563082 0.826401i \(-0.690385\pi\)
0.997225 + 0.0744432i \(0.0237179\pi\)
\(830\) −6.00000 10.3923i −0.208263 0.360722i
\(831\) −48.0000 27.7128i −1.66510 0.961347i
\(832\) 2.00000 + 3.46410i 0.0693375 + 0.120096i
\(833\) 0 0
\(834\) 6.00000 + 3.46410i 0.207763 + 0.119952i
\(835\) 3.00000 0.103819
\(836\) 0 0
\(837\) 10.3923i 0.359211i
\(838\) −18.0000 31.1769i −0.621800 1.07699i
\(839\) 9.00000 15.5885i 0.310715 0.538173i −0.667803 0.744338i \(-0.732765\pi\)
0.978517 + 0.206165i \(0.0660984\pi\)
\(840\) −3.00000 + 3.46410i −0.103510 + 0.119523i
\(841\) −3.50000 6.06218i −0.120690 0.209041i
\(842\) −8.50000 + 14.7224i −0.292929 + 0.507369i
\(843\) 36.3731i 1.25275i
\(844\) −4.00000 6.92820i −0.137686 0.238479i
\(845\) 1.50000 + 2.59808i 0.0516016 + 0.0893765i
\(846\) 4.50000 7.79423i 0.154713 0.267971i
\(847\) −27.5000 + 9.52628i −0.944911 + 0.327327i
\(848\) −3.00000 + 5.19615i −0.103020 + 0.178437i
\(849\) 16.5000 9.52628i 0.566279 0.326941i
\(850\) 0 0
\(851\) −6.00000 −0.205677
\(852\) 0 0
\(853\) −4.00000 + 6.92820i −0.136957 + 0.237217i −0.926343 0.376680i \(-0.877066\pi\)
0.789386 + 0.613897i \(0.210399\pi\)
\(854\) 14.0000 + 12.1244i 0.479070 + 0.414887i
\(855\) −3.00000 + 5.19615i −0.102598 + 0.177705i
\(856\) 0 0
\(857\) −15.0000 25.9808i −0.512390 0.887486i −0.999897 0.0143666i \(-0.995427\pi\)
0.487507 0.873119i \(-0.337907\pi\)
\(858\) 0 0
\(859\) −13.0000 + 22.5167i −0.443554 + 0.768259i −0.997950 0.0639945i \(-0.979616\pi\)
0.554396 + 0.832253i \(0.312949\pi\)
\(860\) 5.50000 + 9.52628i 0.187548 + 0.324843i
\(861\) −9.00000 25.9808i −0.306719 0.885422i
\(862\) −15.0000 + 25.9808i −0.510902 + 0.884908i
\(863\) 10.5000 + 18.1865i 0.357424 + 0.619077i 0.987530 0.157433i \(-0.0503217\pi\)
−0.630106 + 0.776509i \(0.716988\pi\)
\(864\) 5.19615i 0.176777i
\(865\) 12.0000 20.7846i 0.408012 0.706698i
\(866\) −4.00000 −0.135926
\(867\) 25.5000 + 14.7224i 0.866025 + 0.500000i
\(868\) −4.00000 3.46410i −0.135769 0.117579i
\(869\) 0 0
\(870\) 9.00000 + 5.19615i 0.305129 + 0.176166i
\(871\) −14.0000 24.2487i −0.474372 0.821636i
\(872\) −1.00000 + 1.73205i −0.0338643 + 0.0586546i
\(873\) −15.0000 25.9808i −0.507673 0.879316i
\(874\) −6.00000 −0.202953
\(875\) 2.00000 + 1.73205i 0.0676123 + 0.0585540i
\(876\) 3.46410i 0.117041i
\(877\) 17.0000 29.4449i 0.574049 0.994282i −0.422095 0.906552i \(-0.638705\pi\)
0.996144 0.0877308i \(-0.0279615\pi\)
\(878\) 8.00000 0.269987
\(879\) 45.0000 + 25.9808i 1.51781 + 0.876309i
\(880\) 0 0
\(881\) 33.0000 1.11180 0.555899 0.831250i \(-0.312374\pi\)
0.555899 + 0.831250i \(0.312374\pi\)
\(882\) 19.5000 + 7.79423i 0.656599 + 0.262445i
\(883\) −43.0000 −1.44707 −0.723533 0.690290i \(-0.757483\pi\)
−0.723533 + 0.690290i \(0.757483\pi\)
\(884\) 0 0
\(885\) 20.7846i 0.698667i
\(886\) 0 0
\(887\) −4.50000 + 7.79423i −0.151095 + 0.261705i −0.931630 0.363407i \(-0.881613\pi\)
0.780535 + 0.625112i \(0.214947\pi\)
\(888\) −3.00000 1.73205i −0.100673 0.0581238i
\(889\) 26.0000 + 22.5167i 0.872012 + 0.755185i
\(890\) 15.0000 0.502801
\(891\) 0 0
\(892\) 9.50000 16.4545i 0.318084 0.550937i
\(893\) −3.00000 5.19615i −0.100391 0.173883i
\(894\) 25.9808i 0.868927i
\(895\) −9.00000 15.5885i −0.300837 0.521065i
\(896\) −2.00000 1.73205i −0.0668153 0.0578638i
\(897\) 18.0000 10.3923i 0.601003 0.346989i
\(898\) 15.0000 0.500556
\(899\) −6.00000 + 10.3923i −0.200111 + 0.346603i
\(900\) −3.00000 −0.100000
\(901\) 0 0
\(902\) 0 0
\(903\) 33.0000 38.1051i 1.09817 1.26806i
\(904\) 3.00000 + 5.19615i 0.0997785 + 0.172821i
\(905\) 1.00000 1.73205i 0.0332411 0.0575753i
\(906\) −3.00000 1.73205i −0.0996683 0.0575435i
\(907\) 2.00000 + 3.46410i 0.0664089 + 0.115024i 0.897318 0.441384i \(-0.145512\pi\)
−0.830909 + 0.556408i \(0.812179\pi\)
\(908\) −12.0000 20.7846i −0.398234 0.689761i
\(909\) −9.00000 −0.298511
\(910\) −8.00000 6.92820i −0.265197 0.229668i
\(911\) 21.0000 36.3731i 0.695761 1.20509i −0.274162 0.961683i \(-0.588401\pi\)
0.969923 0.243410i \(-0.0782661\pi\)
\(912\) −3.00000 1.73205i −0.0993399 0.0573539i
\(913\) 0 0
\(914\) 26.0000 0.860004
\(915\) 12.1244i 0.400819i
\(916\) −14.5000 + 25.1147i −0.479093 + 0.829814i
\(917\) 0 0
\(918\) 0 0
\(919\) −28.0000 48.4974i −0.923635 1.59978i −0.793742 0.608254i \(-0.791870\pi\)
−0.129893 0.991528i \(-0.541463\pi\)
\(920\) −1.50000 2.59808i −0.0494535 0.0856560i
\(921\) 30.0000 17.3205i 0.988534 0.570730i
\(922\) −13.5000 + 23.3827i −0.444599 + 0.770068i
\(923\) 0 0
\(924\) 0 0
\(925\) −1.00000 + 1.73205i −0.0328798 + 0.0569495i
\(926\) −2.50000 4.33013i −0.0821551 0.142297i
\(927\) 25.5000 + 44.1673i 0.837530 + 1.45064i
\(928\) −3.00000 + 5.19615i −0.0984798 + 0.170572i
\(929\) 15.0000 0.492134 0.246067 0.969253i \(-0.420862\pi\)
0.246067 + 0.969253i \(0.420862\pi\)
\(930\) 3.46410i 0.113592i
\(931\) 11.0000 8.66025i 0.360510 0.283828i
\(932\) −9.00000 15.5885i −0.294805 0.510617i
\(933\) 0 0
\(934\) −7.50000 12.9904i −0.245407 0.425058i
\(935\) 0 0
\(936\) 12.0000 0.392232
\(937\) 44.0000 1.43742 0.718709 0.695311i \(-0.244734\pi\)
0.718709 + 0.695311i \(0.244734\pi\)
\(938\) 14.0000 + 12.1244i 0.457116 + 0.395874i
\(939\) 39.0000 22.5167i 1.27272 0.734803i
\(940\) 1.50000 2.59808i 0.0489246 0.0847399i
\(941\) 15.0000 0.488986 0.244493 0.969651i \(-0.421378\pi\)
0.244493 + 0.969651i \(0.421378\pi\)
\(942\) −33.0000 + 19.0526i −1.07520 + 0.620766i
\(943\) 18.0000 0.586161
\(944\) 12.0000 0.390567
\(945\) 4.50000 + 12.9904i 0.146385 + 0.422577i
\(946\) 0 0
\(947\) 45.0000 1.46230 0.731152 0.682215i \(-0.238983\pi\)
0.731152 + 0.682215i \(0.238983\pi\)
\(948\) −6.00000 + 3.46410i −0.194871 + 0.112509i
\(949\) −8.00000 −0.259691
\(950\) −1.00000 + 1.73205i −0.0324443 + 0.0561951i
\(951\) −27.0000 + 15.5885i −0.875535 + 0.505490i
\(952\) 0 0
\(953\) 18.0000 0.583077 0.291539 0.956559i \(-0.405833\pi\)
0.291539 + 0.956559i \(0.405833\pi\)
\(954\) 9.00000 + 15.5885i 0.291386 + 0.504695i
\(955\) 9.00000 15.5885i 0.291233 0.504431i
\(956\) 12.0000 + 20.7846i 0.388108 + 0.672222i
\(957\) 0 0
\(958\) −9.00000 15.5885i −0.290777 0.503640i
\(959\) −6.00000 + 31.1769i −0.193750 + 1.00676i
\(960\) 1.73205i 0.0559017i
\(961\) −27.0000 −0.870968
\(962\) 4.00000 6.92820i 0.128965 0.223374i
\(963\) 0 0
\(964\) 9.50000 + 16.4545i 0.305974 + 0.529963i
\(965\) −11.0000 + 19.0526i −0.354103 + 0.613324i
\(966\) −9.00000 + 10.3923i −0.289570 + 0.334367i
\(967\) 0.500000 + 0.866025i 0.0160789 + 0.0278495i 0.873953 0.486011i \(-0.161548\pi\)
−0.857874 + 0.513860i \(0.828215\pi\)
\(968\) 5.50000 9.52628i 0.176777 0.306186i
\(969\) 0 0
\(970\) −5.00000 8.66025i −0.160540 0.278064i
\(971\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(972\) −13.5000 7.79423i −0.433013 0.250000i
\(973\) 2.00000 10.3923i 0.0641171 0.333162i
\(974\) −10.0000 + 17.3205i −0.320421 + 0.554985i
\(975\) 6.92820i 0.221880i
\(976\) −7.00000 −0.224065
\(977\) 36.0000 1.15174 0.575871 0.817541i \(-0.304663\pi\)
0.575871 + 0.817541i \(0.304663\pi\)
\(978\) −30.0000 17.3205i −0.959294 0.553849i
\(979\) 0 0
\(980\) 6.50000 + 2.59808i 0.207635 + 0.0829925i
\(981\) 3.00000 + 5.19615i 0.0957826 + 0.165900i
\(982\) −6.00000 10.3923i −0.191468 0.331632i
\(983\) −12.0000 20.7846i −0.382741 0.662926i 0.608712 0.793391i \(-0.291686\pi\)
−0.991453 + 0.130465i \(0.958353\pi\)
\(984\) 9.00000 + 5.19615i 0.286910 + 0.165647i
\(985\) −6.00000 + 10.3923i −0.191176 + 0.331126i
\(986\) 0 0
\(987\) −13.5000 2.59808i −0.429710 0.0826977i
\(988\) 4.00000 6.92820i 0.127257 0.220416i
\(989\) 16.5000 + 28.5788i 0.524669 + 0.908754i
\(990\) 0 0
\(991\) −28.0000 + 48.4974i −0.889449 + 1.54057i −0.0489218 + 0.998803i \(0.515578\pi\)
−0.840528 + 0.541769i \(0.817755\pi\)
\(992\) 2.00000 0.0635001
\(993\) 39.0000 22.5167i 1.23763 0.714545i
\(994\) 0 0
\(995\) −2.00000 3.46410i −0.0634043 0.109819i
\(996\) 20.7846i 0.658586i
\(997\) −7.00000 12.1244i −0.221692 0.383982i 0.733630 0.679549i \(-0.237825\pi\)
−0.955322 + 0.295567i \(0.904491\pi\)
\(998\) 14.0000 24.2487i 0.443162 0.767580i
\(999\) −9.00000 + 5.19615i −0.284747 + 0.164399i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.2.i.d.151.1 yes 2
3.2 odd 2 1890.2.i.a.991.1 2
7.2 even 3 630.2.l.b.331.1 yes 2
9.4 even 3 630.2.l.b.571.1 yes 2
9.5 odd 6 1890.2.l.d.361.1 2
21.2 odd 6 1890.2.l.d.1801.1 2
63.23 odd 6 1890.2.i.a.1171.1 2
63.58 even 3 inner 630.2.i.d.121.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.i.d.121.1 2 63.58 even 3 inner
630.2.i.d.151.1 yes 2 1.1 even 1 trivial
630.2.l.b.331.1 yes 2 7.2 even 3
630.2.l.b.571.1 yes 2 9.4 even 3
1890.2.i.a.991.1 2 3.2 odd 2
1890.2.i.a.1171.1 2 63.23 odd 6
1890.2.l.d.361.1 2 9.5 odd 6
1890.2.l.d.1801.1 2 21.2 odd 6