Properties

Label 1890.2.i.a.1171.1
Level $1890$
Weight $2$
Character 1890.1171
Analytic conductor $15.092$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1890,2,Mod(991,1890)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1890.991"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1890, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1890 = 2 \cdot 3^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1890.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,0,2,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.0917259820\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 630)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1171.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1890.1171
Dual form 1890.2.i.a.991.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +(-0.500000 - 0.866025i) q^{5} +(-2.00000 + 1.73205i) q^{7} -1.00000 q^{8} +(0.500000 + 0.866025i) q^{10} +(2.00000 - 3.46410i) q^{13} +(2.00000 - 1.73205i) q^{14} +1.00000 q^{16} +(-1.00000 + 1.73205i) q^{19} +(-0.500000 - 0.866025i) q^{20} +(-1.50000 - 2.59808i) q^{23} +(-0.500000 + 0.866025i) q^{25} +(-2.00000 + 3.46410i) q^{26} +(-2.00000 + 1.73205i) q^{28} +(3.00000 + 5.19615i) q^{29} +2.00000 q^{31} -1.00000 q^{32} +(2.50000 + 0.866025i) q^{35} +(-1.00000 + 1.73205i) q^{37} +(1.00000 - 1.73205i) q^{38} +(0.500000 + 0.866025i) q^{40} +(-3.00000 + 5.19615i) q^{41} +(-5.50000 - 9.52628i) q^{43} +(1.50000 + 2.59808i) q^{46} -3.00000 q^{47} +(1.00000 - 6.92820i) q^{49} +(0.500000 - 0.866025i) q^{50} +(2.00000 - 3.46410i) q^{52} +(3.00000 + 5.19615i) q^{53} +(2.00000 - 1.73205i) q^{56} +(-3.00000 - 5.19615i) q^{58} -12.0000 q^{59} -7.00000 q^{61} -2.00000 q^{62} +1.00000 q^{64} -4.00000 q^{65} -7.00000 q^{67} +(-2.50000 - 0.866025i) q^{70} +(-1.00000 - 1.73205i) q^{73} +(1.00000 - 1.73205i) q^{74} +(-1.00000 + 1.73205i) q^{76} -4.00000 q^{79} +(-0.500000 - 0.866025i) q^{80} +(3.00000 - 5.19615i) q^{82} +(-6.00000 - 10.3923i) q^{83} +(5.50000 + 9.52628i) q^{86} +(-7.50000 + 12.9904i) q^{89} +(2.00000 + 10.3923i) q^{91} +(-1.50000 - 2.59808i) q^{92} +3.00000 q^{94} +2.00000 q^{95} +(5.00000 + 8.66025i) q^{97} +(-1.00000 + 6.92820i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - q^{5} - 4 q^{7} - 2 q^{8} + q^{10} + 4 q^{13} + 4 q^{14} + 2 q^{16} - 2 q^{19} - q^{20} - 3 q^{23} - q^{25} - 4 q^{26} - 4 q^{28} + 6 q^{29} + 4 q^{31} - 2 q^{32} + 5 q^{35}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1890\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(1081\) \(1541\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 0 0
\(7\) −2.00000 + 1.73205i −0.755929 + 0.654654i
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 0.500000 + 0.866025i 0.158114 + 0.273861i
\(11\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(12\) 0 0
\(13\) 2.00000 3.46410i 0.554700 0.960769i −0.443227 0.896410i \(-0.646166\pi\)
0.997927 0.0643593i \(-0.0205004\pi\)
\(14\) 2.00000 1.73205i 0.534522 0.462910i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 0 0
\(19\) −1.00000 + 1.73205i −0.229416 + 0.397360i −0.957635 0.287984i \(-0.907015\pi\)
0.728219 + 0.685344i \(0.240348\pi\)
\(20\) −0.500000 0.866025i −0.111803 0.193649i
\(21\) 0 0
\(22\) 0 0
\(23\) −1.50000 2.59808i −0.312772 0.541736i 0.666190 0.745782i \(-0.267924\pi\)
−0.978961 + 0.204046i \(0.934591\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) −2.00000 + 3.46410i −0.392232 + 0.679366i
\(27\) 0 0
\(28\) −2.00000 + 1.73205i −0.377964 + 0.327327i
\(29\) 3.00000 + 5.19615i 0.557086 + 0.964901i 0.997738 + 0.0672232i \(0.0214140\pi\)
−0.440652 + 0.897678i \(0.645253\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 0 0
\(35\) 2.50000 + 0.866025i 0.422577 + 0.146385i
\(36\) 0 0
\(37\) −1.00000 + 1.73205i −0.164399 + 0.284747i −0.936442 0.350823i \(-0.885902\pi\)
0.772043 + 0.635571i \(0.219235\pi\)
\(38\) 1.00000 1.73205i 0.162221 0.280976i
\(39\) 0 0
\(40\) 0.500000 + 0.866025i 0.0790569 + 0.136931i
\(41\) −3.00000 + 5.19615i −0.468521 + 0.811503i −0.999353 0.0359748i \(-0.988546\pi\)
0.530831 + 0.847477i \(0.321880\pi\)
\(42\) 0 0
\(43\) −5.50000 9.52628i −0.838742 1.45274i −0.890947 0.454108i \(-0.849958\pi\)
0.0522047 0.998636i \(-0.483375\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 1.50000 + 2.59808i 0.221163 + 0.383065i
\(47\) −3.00000 −0.437595 −0.218797 0.975770i \(-0.570213\pi\)
−0.218797 + 0.975770i \(0.570213\pi\)
\(48\) 0 0
\(49\) 1.00000 6.92820i 0.142857 0.989743i
\(50\) 0.500000 0.866025i 0.0707107 0.122474i
\(51\) 0 0
\(52\) 2.00000 3.46410i 0.277350 0.480384i
\(53\) 3.00000 + 5.19615i 0.412082 + 0.713746i 0.995117 0.0987002i \(-0.0314685\pi\)
−0.583036 + 0.812447i \(0.698135\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 2.00000 1.73205i 0.267261 0.231455i
\(57\) 0 0
\(58\) −3.00000 5.19615i −0.393919 0.682288i
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 0 0
\(61\) −7.00000 −0.896258 −0.448129 0.893969i \(-0.647910\pi\)
−0.448129 + 0.893969i \(0.647910\pi\)
\(62\) −2.00000 −0.254000
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) −7.00000 −0.855186 −0.427593 0.903971i \(-0.640638\pi\)
−0.427593 + 0.903971i \(0.640638\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −2.50000 0.866025i −0.298807 0.103510i
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −1.00000 1.73205i −0.117041 0.202721i 0.801553 0.597924i \(-0.204008\pi\)
−0.918594 + 0.395203i \(0.870674\pi\)
\(74\) 1.00000 1.73205i 0.116248 0.201347i
\(75\) 0 0
\(76\) −1.00000 + 1.73205i −0.114708 + 0.198680i
\(77\) 0 0
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) −0.500000 0.866025i −0.0559017 0.0968246i
\(81\) 0 0
\(82\) 3.00000 5.19615i 0.331295 0.573819i
\(83\) −6.00000 10.3923i −0.658586 1.14070i −0.980982 0.194099i \(-0.937822\pi\)
0.322396 0.946605i \(-0.395512\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 5.50000 + 9.52628i 0.593080 + 1.02725i
\(87\) 0 0
\(88\) 0 0
\(89\) −7.50000 + 12.9904i −0.794998 + 1.37698i 0.127842 + 0.991795i \(0.459195\pi\)
−0.922840 + 0.385183i \(0.874138\pi\)
\(90\) 0 0
\(91\) 2.00000 + 10.3923i 0.209657 + 1.08941i
\(92\) −1.50000 2.59808i −0.156386 0.270868i
\(93\) 0 0
\(94\) 3.00000 0.309426
\(95\) 2.00000 0.205196
\(96\) 0 0
\(97\) 5.00000 + 8.66025i 0.507673 + 0.879316i 0.999961 + 0.00888289i \(0.00282755\pi\)
−0.492287 + 0.870433i \(0.663839\pi\)
\(98\) −1.00000 + 6.92820i −0.101015 + 0.699854i
\(99\) 0 0
\(100\) −0.500000 + 0.866025i −0.0500000 + 0.0866025i
\(101\) 1.50000 2.59808i 0.149256 0.258518i −0.781697 0.623658i \(-0.785646\pi\)
0.930953 + 0.365140i \(0.118979\pi\)
\(102\) 0 0
\(103\) −8.50000 14.7224i −0.837530 1.45064i −0.891954 0.452126i \(-0.850666\pi\)
0.0544240 0.998518i \(-0.482668\pi\)
\(104\) −2.00000 + 3.46410i −0.196116 + 0.339683i
\(105\) 0 0
\(106\) −3.00000 5.19615i −0.291386 0.504695i
\(107\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(108\) 0 0
\(109\) −1.00000 1.73205i −0.0957826 0.165900i 0.814152 0.580651i \(-0.197202\pi\)
−0.909935 + 0.414751i \(0.863869\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −2.00000 + 1.73205i −0.188982 + 0.163663i
\(113\) −3.00000 + 5.19615i −0.282216 + 0.488813i −0.971930 0.235269i \(-0.924403\pi\)
0.689714 + 0.724082i \(0.257736\pi\)
\(114\) 0 0
\(115\) −1.50000 + 2.59808i −0.139876 + 0.242272i
\(116\) 3.00000 + 5.19615i 0.278543 + 0.482451i
\(117\) 0 0
\(118\) 12.0000 1.10469
\(119\) 0 0
\(120\) 0 0
\(121\) 5.50000 + 9.52628i 0.500000 + 0.866025i
\(122\) 7.00000 0.633750
\(123\) 0 0
\(124\) 2.00000 0.179605
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −13.0000 −1.15356 −0.576782 0.816898i \(-0.695692\pi\)
−0.576782 + 0.816898i \(0.695692\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 4.00000 0.350823
\(131\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(132\) 0 0
\(133\) −1.00000 5.19615i −0.0867110 0.450564i
\(134\) 7.00000 0.604708
\(135\) 0 0
\(136\) 0 0
\(137\) 6.00000 10.3923i 0.512615 0.887875i −0.487278 0.873247i \(-0.662010\pi\)
0.999893 0.0146279i \(-0.00465636\pi\)
\(138\) 0 0
\(139\) 2.00000 3.46410i 0.169638 0.293821i −0.768655 0.639664i \(-0.779074\pi\)
0.938293 + 0.345843i \(0.112407\pi\)
\(140\) 2.50000 + 0.866025i 0.211289 + 0.0731925i
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 3.00000 5.19615i 0.249136 0.431517i
\(146\) 1.00000 + 1.73205i 0.0827606 + 0.143346i
\(147\) 0 0
\(148\) −1.00000 + 1.73205i −0.0821995 + 0.142374i
\(149\) 7.50000 + 12.9904i 0.614424 + 1.06421i 0.990485 + 0.137619i \(0.0439449\pi\)
−0.376061 + 0.926595i \(0.622722\pi\)
\(150\) 0 0
\(151\) −1.00000 + 1.73205i −0.0813788 + 0.140952i −0.903842 0.427865i \(-0.859266\pi\)
0.822464 + 0.568818i \(0.192599\pi\)
\(152\) 1.00000 1.73205i 0.0811107 0.140488i
\(153\) 0 0
\(154\) 0 0
\(155\) −1.00000 1.73205i −0.0803219 0.139122i
\(156\) 0 0
\(157\) −22.0000 −1.75579 −0.877896 0.478852i \(-0.841053\pi\)
−0.877896 + 0.478852i \(0.841053\pi\)
\(158\) 4.00000 0.318223
\(159\) 0 0
\(160\) 0.500000 + 0.866025i 0.0395285 + 0.0684653i
\(161\) 7.50000 + 2.59808i 0.591083 + 0.204757i
\(162\) 0 0
\(163\) −10.0000 + 17.3205i −0.783260 + 1.35665i 0.146772 + 0.989170i \(0.453112\pi\)
−0.930033 + 0.367477i \(0.880222\pi\)
\(164\) −3.00000 + 5.19615i −0.234261 + 0.405751i
\(165\) 0 0
\(166\) 6.00000 + 10.3923i 0.465690 + 0.806599i
\(167\) −1.50000 + 2.59808i −0.116073 + 0.201045i −0.918208 0.396098i \(-0.870364\pi\)
0.802135 + 0.597143i \(0.203697\pi\)
\(168\) 0 0
\(169\) −1.50000 2.59808i −0.115385 0.199852i
\(170\) 0 0
\(171\) 0 0
\(172\) −5.50000 9.52628i −0.419371 0.726372i
\(173\) −24.0000 −1.82469 −0.912343 0.409426i \(-0.865729\pi\)
−0.912343 + 0.409426i \(0.865729\pi\)
\(174\) 0 0
\(175\) −0.500000 2.59808i −0.0377964 0.196396i
\(176\) 0 0
\(177\) 0 0
\(178\) 7.50000 12.9904i 0.562149 0.973670i
\(179\) −9.00000 15.5885i −0.672692 1.16514i −0.977138 0.212607i \(-0.931805\pi\)
0.304446 0.952529i \(-0.401529\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) −2.00000 10.3923i −0.148250 0.770329i
\(183\) 0 0
\(184\) 1.50000 + 2.59808i 0.110581 + 0.191533i
\(185\) 2.00000 0.147043
\(186\) 0 0
\(187\) 0 0
\(188\) −3.00000 −0.218797
\(189\) 0 0
\(190\) −2.00000 −0.145095
\(191\) −18.0000 −1.30243 −0.651217 0.758891i \(-0.725741\pi\)
−0.651217 + 0.758891i \(0.725741\pi\)
\(192\) 0 0
\(193\) −22.0000 −1.58359 −0.791797 0.610784i \(-0.790854\pi\)
−0.791797 + 0.610784i \(0.790854\pi\)
\(194\) −5.00000 8.66025i −0.358979 0.621770i
\(195\) 0 0
\(196\) 1.00000 6.92820i 0.0714286 0.494872i
\(197\) 12.0000 0.854965 0.427482 0.904024i \(-0.359401\pi\)
0.427482 + 0.904024i \(0.359401\pi\)
\(198\) 0 0
\(199\) 2.00000 + 3.46410i 0.141776 + 0.245564i 0.928166 0.372168i \(-0.121385\pi\)
−0.786389 + 0.617731i \(0.788052\pi\)
\(200\) 0.500000 0.866025i 0.0353553 0.0612372i
\(201\) 0 0
\(202\) −1.50000 + 2.59808i −0.105540 + 0.182800i
\(203\) −15.0000 5.19615i −1.05279 0.364698i
\(204\) 0 0
\(205\) 6.00000 0.419058
\(206\) 8.50000 + 14.7224i 0.592223 + 1.02576i
\(207\) 0 0
\(208\) 2.00000 3.46410i 0.138675 0.240192i
\(209\) 0 0
\(210\) 0 0
\(211\) −4.00000 + 6.92820i −0.275371 + 0.476957i −0.970229 0.242190i \(-0.922134\pi\)
0.694857 + 0.719148i \(0.255467\pi\)
\(212\) 3.00000 + 5.19615i 0.206041 + 0.356873i
\(213\) 0 0
\(214\) 0 0
\(215\) −5.50000 + 9.52628i −0.375097 + 0.649687i
\(216\) 0 0
\(217\) −4.00000 + 3.46410i −0.271538 + 0.235159i
\(218\) 1.00000 + 1.73205i 0.0677285 + 0.117309i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 9.50000 + 16.4545i 0.636167 + 1.10187i 0.986267 + 0.165161i \(0.0528144\pi\)
−0.350100 + 0.936713i \(0.613852\pi\)
\(224\) 2.00000 1.73205i 0.133631 0.115728i
\(225\) 0 0
\(226\) 3.00000 5.19615i 0.199557 0.345643i
\(227\) 12.0000 20.7846i 0.796468 1.37952i −0.125435 0.992102i \(-0.540033\pi\)
0.921903 0.387421i \(-0.126634\pi\)
\(228\) 0 0
\(229\) −14.5000 25.1147i −0.958187 1.65963i −0.726900 0.686743i \(-0.759040\pi\)
−0.231287 0.972886i \(-0.574293\pi\)
\(230\) 1.50000 2.59808i 0.0989071 0.171312i
\(231\) 0 0
\(232\) −3.00000 5.19615i −0.196960 0.341144i
\(233\) 9.00000 15.5885i 0.589610 1.02123i −0.404674 0.914461i \(-0.632615\pi\)
0.994283 0.106773i \(-0.0340517\pi\)
\(234\) 0 0
\(235\) 1.50000 + 2.59808i 0.0978492 + 0.169480i
\(236\) −12.0000 −0.781133
\(237\) 0 0
\(238\) 0 0
\(239\) −12.0000 + 20.7846i −0.776215 + 1.34444i 0.157893 + 0.987456i \(0.449530\pi\)
−0.934109 + 0.356988i \(0.883804\pi\)
\(240\) 0 0
\(241\) 9.50000 16.4545i 0.611949 1.05993i −0.378963 0.925412i \(-0.623719\pi\)
0.990912 0.134515i \(-0.0429475\pi\)
\(242\) −5.50000 9.52628i −0.353553 0.612372i
\(243\) 0 0
\(244\) −7.00000 −0.448129
\(245\) −6.50000 + 2.59808i −0.415270 + 0.165985i
\(246\) 0 0
\(247\) 4.00000 + 6.92820i 0.254514 + 0.440831i
\(248\) −2.00000 −0.127000
\(249\) 0 0
\(250\) −1.00000 −0.0632456
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 13.0000 0.815693
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −9.00000 15.5885i −0.561405 0.972381i −0.997374 0.0724199i \(-0.976928\pi\)
0.435970 0.899961i \(-0.356405\pi\)
\(258\) 0 0
\(259\) −1.00000 5.19615i −0.0621370 0.322873i
\(260\) −4.00000 −0.248069
\(261\) 0 0
\(262\) 0 0
\(263\) 4.50000 7.79423i 0.277482 0.480613i −0.693276 0.720672i \(-0.743833\pi\)
0.970758 + 0.240059i \(0.0771668\pi\)
\(264\) 0 0
\(265\) 3.00000 5.19615i 0.184289 0.319197i
\(266\) 1.00000 + 5.19615i 0.0613139 + 0.318597i
\(267\) 0 0
\(268\) −7.00000 −0.427593
\(269\) −10.5000 18.1865i −0.640196 1.10885i −0.985389 0.170321i \(-0.945520\pi\)
0.345192 0.938532i \(-0.387814\pi\)
\(270\) 0 0
\(271\) −10.0000 + 17.3205i −0.607457 + 1.05215i 0.384201 + 0.923249i \(0.374477\pi\)
−0.991658 + 0.128897i \(0.958856\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −6.00000 + 10.3923i −0.362473 + 0.627822i
\(275\) 0 0
\(276\) 0 0
\(277\) −16.0000 + 27.7128i −0.961347 + 1.66510i −0.242222 + 0.970221i \(0.577876\pi\)
−0.719125 + 0.694881i \(0.755457\pi\)
\(278\) −2.00000 + 3.46410i −0.119952 + 0.207763i
\(279\) 0 0
\(280\) −2.50000 0.866025i −0.149404 0.0517549i
\(281\) 10.5000 + 18.1865i 0.626377 + 1.08492i 0.988273 + 0.152699i \(0.0487965\pi\)
−0.361895 + 0.932219i \(0.617870\pi\)
\(282\) 0 0
\(283\) 11.0000 0.653882 0.326941 0.945045i \(-0.393982\pi\)
0.326941 + 0.945045i \(0.393982\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3.00000 15.5885i −0.177084 0.920158i
\(288\) 0 0
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) −3.00000 + 5.19615i −0.176166 + 0.305129i
\(291\) 0 0
\(292\) −1.00000 1.73205i −0.0585206 0.101361i
\(293\) −15.0000 + 25.9808i −0.876309 + 1.51781i −0.0209480 + 0.999781i \(0.506668\pi\)
−0.855361 + 0.518032i \(0.826665\pi\)
\(294\) 0 0
\(295\) 6.00000 + 10.3923i 0.349334 + 0.605063i
\(296\) 1.00000 1.73205i 0.0581238 0.100673i
\(297\) 0 0
\(298\) −7.50000 12.9904i −0.434463 0.752513i
\(299\) −12.0000 −0.693978
\(300\) 0 0
\(301\) 27.5000 + 9.52628i 1.58507 + 0.549086i
\(302\) 1.00000 1.73205i 0.0575435 0.0996683i
\(303\) 0 0
\(304\) −1.00000 + 1.73205i −0.0573539 + 0.0993399i
\(305\) 3.50000 + 6.06218i 0.200409 + 0.347119i
\(306\) 0 0
\(307\) 20.0000 1.14146 0.570730 0.821138i \(-0.306660\pi\)
0.570730 + 0.821138i \(0.306660\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 1.00000 + 1.73205i 0.0567962 + 0.0983739i
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 26.0000 1.46961 0.734803 0.678280i \(-0.237274\pi\)
0.734803 + 0.678280i \(0.237274\pi\)
\(314\) 22.0000 1.24153
\(315\) 0 0
\(316\) −4.00000 −0.225018
\(317\) 18.0000 1.01098 0.505490 0.862832i \(-0.331312\pi\)
0.505490 + 0.862832i \(0.331312\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.500000 0.866025i −0.0279508 0.0484123i
\(321\) 0 0
\(322\) −7.50000 2.59808i −0.417959 0.144785i
\(323\) 0 0
\(324\) 0 0
\(325\) 2.00000 + 3.46410i 0.110940 + 0.192154i
\(326\) 10.0000 17.3205i 0.553849 0.959294i
\(327\) 0 0
\(328\) 3.00000 5.19615i 0.165647 0.286910i
\(329\) 6.00000 5.19615i 0.330791 0.286473i
\(330\) 0 0
\(331\) 26.0000 1.42909 0.714545 0.699590i \(-0.246634\pi\)
0.714545 + 0.699590i \(0.246634\pi\)
\(332\) −6.00000 10.3923i −0.329293 0.570352i
\(333\) 0 0
\(334\) 1.50000 2.59808i 0.0820763 0.142160i
\(335\) 3.50000 + 6.06218i 0.191225 + 0.331212i
\(336\) 0 0
\(337\) −16.0000 + 27.7128i −0.871576 + 1.50961i −0.0112091 + 0.999937i \(0.503568\pi\)
−0.860366 + 0.509676i \(0.829765\pi\)
\(338\) 1.50000 + 2.59808i 0.0815892 + 0.141317i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 10.0000 + 15.5885i 0.539949 + 0.841698i
\(344\) 5.50000 + 9.52628i 0.296540 + 0.513623i
\(345\) 0 0
\(346\) 24.0000 1.29025
\(347\) −27.0000 −1.44944 −0.724718 0.689046i \(-0.758030\pi\)
−0.724718 + 0.689046i \(0.758030\pi\)
\(348\) 0 0
\(349\) 3.50000 + 6.06218i 0.187351 + 0.324501i 0.944366 0.328896i \(-0.106677\pi\)
−0.757015 + 0.653397i \(0.773343\pi\)
\(350\) 0.500000 + 2.59808i 0.0267261 + 0.138873i
\(351\) 0 0
\(352\) 0 0
\(353\) 12.0000 20.7846i 0.638696 1.10625i −0.347024 0.937856i \(-0.612808\pi\)
0.985719 0.168397i \(-0.0538590\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −7.50000 + 12.9904i −0.397499 + 0.688489i
\(357\) 0 0
\(358\) 9.00000 + 15.5885i 0.475665 + 0.823876i
\(359\) 3.00000 5.19615i 0.158334 0.274242i −0.775934 0.630814i \(-0.782721\pi\)
0.934268 + 0.356572i \(0.116054\pi\)
\(360\) 0 0
\(361\) 7.50000 + 12.9904i 0.394737 + 0.683704i
\(362\) −2.00000 −0.105118
\(363\) 0 0
\(364\) 2.00000 + 10.3923i 0.104828 + 0.544705i
\(365\) −1.00000 + 1.73205i −0.0523424 + 0.0906597i
\(366\) 0 0
\(367\) −8.50000 + 14.7224i −0.443696 + 0.768505i −0.997960 0.0638362i \(-0.979666\pi\)
0.554264 + 0.832341i \(0.313000\pi\)
\(368\) −1.50000 2.59808i −0.0781929 0.135434i
\(369\) 0 0
\(370\) −2.00000 −0.103975
\(371\) −15.0000 5.19615i −0.778761 0.269771i
\(372\) 0 0
\(373\) −7.00000 12.1244i −0.362446 0.627775i 0.625917 0.779890i \(-0.284725\pi\)
−0.988363 + 0.152115i \(0.951392\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 3.00000 0.154713
\(377\) 24.0000 1.23606
\(378\) 0 0
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) 2.00000 0.102598
\(381\) 0 0
\(382\) 18.0000 0.920960
\(383\) −10.5000 18.1865i −0.536525 0.929288i −0.999088 0.0427020i \(-0.986403\pi\)
0.462563 0.886586i \(-0.346930\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 22.0000 1.11977
\(387\) 0 0
\(388\) 5.00000 + 8.66025i 0.253837 + 0.439658i
\(389\) 13.5000 23.3827i 0.684477 1.18555i −0.289124 0.957292i \(-0.593364\pi\)
0.973601 0.228257i \(-0.0733028\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −1.00000 + 6.92820i −0.0505076 + 0.349927i
\(393\) 0 0
\(394\) −12.0000 −0.604551
\(395\) 2.00000 + 3.46410i 0.100631 + 0.174298i
\(396\) 0 0
\(397\) 14.0000 24.2487i 0.702640 1.21701i −0.264897 0.964277i \(-0.585338\pi\)
0.967537 0.252731i \(-0.0813288\pi\)
\(398\) −2.00000 3.46410i −0.100251 0.173640i
\(399\) 0 0
\(400\) −0.500000 + 0.866025i −0.0250000 + 0.0433013i
\(401\) 7.50000 + 12.9904i 0.374532 + 0.648709i 0.990257 0.139253i \(-0.0444700\pi\)
−0.615725 + 0.787961i \(0.711137\pi\)
\(402\) 0 0
\(403\) 4.00000 6.92820i 0.199254 0.345118i
\(404\) 1.50000 2.59808i 0.0746278 0.129259i
\(405\) 0 0
\(406\) 15.0000 + 5.19615i 0.744438 + 0.257881i
\(407\) 0 0
\(408\) 0 0
\(409\) −1.00000 −0.0494468 −0.0247234 0.999694i \(-0.507871\pi\)
−0.0247234 + 0.999694i \(0.507871\pi\)
\(410\) −6.00000 −0.296319
\(411\) 0 0
\(412\) −8.50000 14.7224i −0.418765 0.725322i
\(413\) 24.0000 20.7846i 1.18096 1.02274i
\(414\) 0 0
\(415\) −6.00000 + 10.3923i −0.294528 + 0.510138i
\(416\) −2.00000 + 3.46410i −0.0980581 + 0.169842i
\(417\) 0 0
\(418\) 0 0
\(419\) 18.0000 31.1769i 0.879358 1.52309i 0.0273103 0.999627i \(-0.491306\pi\)
0.852047 0.523465i \(-0.175361\pi\)
\(420\) 0 0
\(421\) −8.50000 14.7224i −0.414265 0.717527i 0.581086 0.813842i \(-0.302628\pi\)
−0.995351 + 0.0963145i \(0.969295\pi\)
\(422\) 4.00000 6.92820i 0.194717 0.337260i
\(423\) 0 0
\(424\) −3.00000 5.19615i −0.145693 0.252347i
\(425\) 0 0
\(426\) 0 0
\(427\) 14.0000 12.1244i 0.677507 0.586739i
\(428\) 0 0
\(429\) 0 0
\(430\) 5.50000 9.52628i 0.265234 0.459398i
\(431\) 15.0000 + 25.9808i 0.722525 + 1.25145i 0.959985 + 0.280052i \(0.0903517\pi\)
−0.237460 + 0.971397i \(0.576315\pi\)
\(432\) 0 0
\(433\) −4.00000 −0.192228 −0.0961139 0.995370i \(-0.530641\pi\)
−0.0961139 + 0.995370i \(0.530641\pi\)
\(434\) 4.00000 3.46410i 0.192006 0.166282i
\(435\) 0 0
\(436\) −1.00000 1.73205i −0.0478913 0.0829502i
\(437\) 6.00000 0.287019
\(438\) 0 0
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 15.0000 0.711068
\(446\) −9.50000 16.4545i −0.449838 0.779142i
\(447\) 0 0
\(448\) −2.00000 + 1.73205i −0.0944911 + 0.0818317i
\(449\) −15.0000 −0.707894 −0.353947 0.935266i \(-0.615161\pi\)
−0.353947 + 0.935266i \(0.615161\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −3.00000 + 5.19615i −0.141108 + 0.244406i
\(453\) 0 0
\(454\) −12.0000 + 20.7846i −0.563188 + 0.975470i
\(455\) 8.00000 6.92820i 0.375046 0.324799i
\(456\) 0 0
\(457\) 26.0000 1.21623 0.608114 0.793849i \(-0.291926\pi\)
0.608114 + 0.793849i \(0.291926\pi\)
\(458\) 14.5000 + 25.1147i 0.677541 + 1.17353i
\(459\) 0 0
\(460\) −1.50000 + 2.59808i −0.0699379 + 0.121136i
\(461\) 13.5000 + 23.3827i 0.628758 + 1.08904i 0.987801 + 0.155719i \(0.0497696\pi\)
−0.359044 + 0.933321i \(0.616897\pi\)
\(462\) 0 0
\(463\) −2.50000 + 4.33013i −0.116185 + 0.201238i −0.918253 0.395995i \(-0.870400\pi\)
0.802068 + 0.597233i \(0.203733\pi\)
\(464\) 3.00000 + 5.19615i 0.139272 + 0.241225i
\(465\) 0 0
\(466\) −9.00000 + 15.5885i −0.416917 + 0.722121i
\(467\) 7.50000 12.9904i 0.347059 0.601123i −0.638667 0.769483i \(-0.720514\pi\)
0.985726 + 0.168360i \(0.0538472\pi\)
\(468\) 0 0
\(469\) 14.0000 12.1244i 0.646460 0.559851i
\(470\) −1.50000 2.59808i −0.0691898 0.119840i
\(471\) 0 0
\(472\) 12.0000 0.552345
\(473\) 0 0
\(474\) 0 0
\(475\) −1.00000 1.73205i −0.0458831 0.0794719i
\(476\) 0 0
\(477\) 0 0
\(478\) 12.0000 20.7846i 0.548867 0.950666i
\(479\) 9.00000 15.5885i 0.411220 0.712255i −0.583803 0.811895i \(-0.698436\pi\)
0.995023 + 0.0996406i \(0.0317693\pi\)
\(480\) 0 0
\(481\) 4.00000 + 6.92820i 0.182384 + 0.315899i
\(482\) −9.50000 + 16.4545i −0.432713 + 0.749481i
\(483\) 0 0
\(484\) 5.50000 + 9.52628i 0.250000 + 0.433013i
\(485\) 5.00000 8.66025i 0.227038 0.393242i
\(486\) 0 0
\(487\) −10.0000 17.3205i −0.453143 0.784867i 0.545436 0.838152i \(-0.316364\pi\)
−0.998579 + 0.0532853i \(0.983031\pi\)
\(488\) 7.00000 0.316875
\(489\) 0 0
\(490\) 6.50000 2.59808i 0.293640 0.117369i
\(491\) 6.00000 10.3923i 0.270776 0.468998i −0.698285 0.715820i \(-0.746053\pi\)
0.969061 + 0.246822i \(0.0793863\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −4.00000 6.92820i −0.179969 0.311715i
\(495\) 0 0
\(496\) 2.00000 0.0898027
\(497\) 0 0
\(498\) 0 0
\(499\) 14.0000 + 24.2487i 0.626726 + 1.08552i 0.988204 + 0.153141i \(0.0489388\pi\)
−0.361478 + 0.932381i \(0.617728\pi\)
\(500\) 1.00000 0.0447214
\(501\) 0 0
\(502\) −12.0000 −0.535586
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) −3.00000 −0.133498
\(506\) 0 0
\(507\) 0 0
\(508\) −13.0000 −0.576782
\(509\) −9.00000 15.5885i −0.398918 0.690946i 0.594675 0.803966i \(-0.297281\pi\)
−0.993593 + 0.113020i \(0.963948\pi\)
\(510\) 0 0
\(511\) 5.00000 + 1.73205i 0.221187 + 0.0766214i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 9.00000 + 15.5885i 0.396973 + 0.687577i
\(515\) −8.50000 + 14.7224i −0.374555 + 0.648748i
\(516\) 0 0
\(517\) 0 0
\(518\) 1.00000 + 5.19615i 0.0439375 + 0.228306i
\(519\) 0 0
\(520\) 4.00000 0.175412
\(521\) 13.5000 + 23.3827i 0.591446 + 1.02441i 0.994038 + 0.109035i \(0.0347759\pi\)
−0.402592 + 0.915379i \(0.631891\pi\)
\(522\) 0 0
\(523\) −14.5000 + 25.1147i −0.634041 + 1.09819i 0.352677 + 0.935745i \(0.385272\pi\)
−0.986718 + 0.162446i \(0.948062\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −4.50000 + 7.79423i −0.196209 + 0.339845i
\(527\) 0 0
\(528\) 0 0
\(529\) 7.00000 12.1244i 0.304348 0.527146i
\(530\) −3.00000 + 5.19615i −0.130312 + 0.225706i
\(531\) 0 0
\(532\) −1.00000 5.19615i −0.0433555 0.225282i
\(533\) 12.0000 + 20.7846i 0.519778 + 0.900281i
\(534\) 0 0
\(535\) 0 0
\(536\) 7.00000 0.302354
\(537\) 0 0
\(538\) 10.5000 + 18.1865i 0.452687 + 0.784077i
\(539\) 0 0
\(540\) 0 0
\(541\) 12.5000 21.6506i 0.537417 0.930834i −0.461625 0.887075i \(-0.652733\pi\)
0.999042 0.0437584i \(-0.0139332\pi\)
\(542\) 10.0000 17.3205i 0.429537 0.743980i
\(543\) 0 0
\(544\) 0 0
\(545\) −1.00000 + 1.73205i −0.0428353 + 0.0741929i
\(546\) 0 0
\(547\) −4.00000 6.92820i −0.171028 0.296229i 0.767752 0.640747i \(-0.221375\pi\)
−0.938779 + 0.344519i \(0.888042\pi\)
\(548\) 6.00000 10.3923i 0.256307 0.443937i
\(549\) 0 0
\(550\) 0 0
\(551\) −12.0000 −0.511217
\(552\) 0 0
\(553\) 8.00000 6.92820i 0.340195 0.294617i
\(554\) 16.0000 27.7128i 0.679775 1.17740i
\(555\) 0 0
\(556\) 2.00000 3.46410i 0.0848189 0.146911i
\(557\) 3.00000 + 5.19615i 0.127114 + 0.220168i 0.922557 0.385860i \(-0.126095\pi\)
−0.795443 + 0.606028i \(0.792762\pi\)
\(558\) 0 0
\(559\) −44.0000 −1.86100
\(560\) 2.50000 + 0.866025i 0.105644 + 0.0365963i
\(561\) 0 0
\(562\) −10.5000 18.1865i −0.442916 0.767153i
\(563\) 9.00000 0.379305 0.189652 0.981851i \(-0.439264\pi\)
0.189652 + 0.981851i \(0.439264\pi\)
\(564\) 0 0
\(565\) 6.00000 0.252422
\(566\) −11.0000 −0.462364
\(567\) 0 0
\(568\) 0 0
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) 32.0000 1.33916 0.669579 0.742741i \(-0.266474\pi\)
0.669579 + 0.742741i \(0.266474\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 3.00000 + 15.5885i 0.125218 + 0.650650i
\(575\) 3.00000 0.125109
\(576\) 0 0
\(577\) −10.0000 17.3205i −0.416305 0.721062i 0.579259 0.815144i \(-0.303342\pi\)
−0.995565 + 0.0940813i \(0.970009\pi\)
\(578\) −8.50000 + 14.7224i −0.353553 + 0.612372i
\(579\) 0 0
\(580\) 3.00000 5.19615i 0.124568 0.215758i
\(581\) 30.0000 + 10.3923i 1.24461 + 0.431145i
\(582\) 0 0
\(583\) 0 0
\(584\) 1.00000 + 1.73205i 0.0413803 + 0.0716728i
\(585\) 0 0
\(586\) 15.0000 25.9808i 0.619644 1.07326i
\(587\) 22.5000 + 38.9711i 0.928674 + 1.60851i 0.785543 + 0.618808i \(0.212384\pi\)
0.143132 + 0.989704i \(0.454283\pi\)
\(588\) 0 0
\(589\) −2.00000 + 3.46410i −0.0824086 + 0.142736i
\(590\) −6.00000 10.3923i −0.247016 0.427844i
\(591\) 0 0
\(592\) −1.00000 + 1.73205i −0.0410997 + 0.0711868i
\(593\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 7.50000 + 12.9904i 0.307212 + 0.532107i
\(597\) 0 0
\(598\) 12.0000 0.490716
\(599\) −6.00000 −0.245153 −0.122577 0.992459i \(-0.539116\pi\)
−0.122577 + 0.992459i \(0.539116\pi\)
\(600\) 0 0
\(601\) 5.00000 + 8.66025i 0.203954 + 0.353259i 0.949799 0.312861i \(-0.101287\pi\)
−0.745845 + 0.666120i \(0.767954\pi\)
\(602\) −27.5000 9.52628i −1.12082 0.388262i
\(603\) 0 0
\(604\) −1.00000 + 1.73205i −0.0406894 + 0.0704761i
\(605\) 5.50000 9.52628i 0.223607 0.387298i
\(606\) 0 0
\(607\) −16.0000 27.7128i −0.649420 1.12483i −0.983262 0.182199i \(-0.941678\pi\)
0.333842 0.942629i \(-0.391655\pi\)
\(608\) 1.00000 1.73205i 0.0405554 0.0702439i
\(609\) 0 0
\(610\) −3.50000 6.06218i −0.141711 0.245450i
\(611\) −6.00000 + 10.3923i −0.242734 + 0.420428i
\(612\) 0 0
\(613\) −19.0000 32.9090i −0.767403 1.32918i −0.938967 0.344008i \(-0.888215\pi\)
0.171564 0.985173i \(-0.445118\pi\)
\(614\) −20.0000 −0.807134
\(615\) 0 0
\(616\) 0 0
\(617\) −3.00000 + 5.19615i −0.120775 + 0.209189i −0.920074 0.391745i \(-0.871871\pi\)
0.799298 + 0.600935i \(0.205205\pi\)
\(618\) 0 0
\(619\) 5.00000 8.66025i 0.200967 0.348085i −0.747873 0.663842i \(-0.768925\pi\)
0.948840 + 0.315757i \(0.102258\pi\)
\(620\) −1.00000 1.73205i −0.0401610 0.0695608i
\(621\) 0 0
\(622\) 0 0
\(623\) −7.50000 38.9711i −0.300481 1.56135i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) −26.0000 −1.03917
\(627\) 0 0
\(628\) −22.0000 −0.877896
\(629\) 0 0
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 4.00000 0.159111
\(633\) 0 0
\(634\) −18.0000 −0.714871
\(635\) 6.50000 + 11.2583i 0.257945 + 0.446773i
\(636\) 0 0
\(637\) −22.0000 17.3205i −0.871672 0.686264i
\(638\) 0 0
\(639\) 0 0
\(640\) 0.500000 + 0.866025i 0.0197642 + 0.0342327i
\(641\) −7.50000 + 12.9904i −0.296232 + 0.513089i −0.975271 0.221013i \(-0.929064\pi\)
0.679039 + 0.734103i \(0.262397\pi\)
\(642\) 0 0
\(643\) 21.5000 37.2391i 0.847877 1.46857i −0.0352216 0.999380i \(-0.511214\pi\)
0.883099 0.469187i \(-0.155453\pi\)
\(644\) 7.50000 + 2.59808i 0.295541 + 0.102379i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) −2.00000 3.46410i −0.0784465 0.135873i
\(651\) 0 0
\(652\) −10.0000 + 17.3205i −0.391630 + 0.678323i
\(653\) 15.0000 + 25.9808i 0.586995 + 1.01671i 0.994623 + 0.103558i \(0.0330227\pi\)
−0.407628 + 0.913148i \(0.633644\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −3.00000 + 5.19615i −0.117130 + 0.202876i
\(657\) 0 0
\(658\) −6.00000 + 5.19615i −0.233904 + 0.202567i
\(659\) 12.0000 + 20.7846i 0.467454 + 0.809653i 0.999309 0.0371821i \(-0.0118382\pi\)
−0.531855 + 0.846836i \(0.678505\pi\)
\(660\) 0 0
\(661\) 5.00000 0.194477 0.0972387 0.995261i \(-0.468999\pi\)
0.0972387 + 0.995261i \(0.468999\pi\)
\(662\) −26.0000 −1.01052
\(663\) 0 0
\(664\) 6.00000 + 10.3923i 0.232845 + 0.403300i
\(665\) −4.00000 + 3.46410i −0.155113 + 0.134332i
\(666\) 0 0
\(667\) 9.00000 15.5885i 0.348481 0.603587i
\(668\) −1.50000 + 2.59808i −0.0580367 + 0.100523i
\(669\) 0 0
\(670\) −3.50000 6.06218i −0.135217 0.234202i
\(671\) 0 0
\(672\) 0 0
\(673\) 14.0000 + 24.2487i 0.539660 + 0.934719i 0.998922 + 0.0464181i \(0.0147807\pi\)
−0.459262 + 0.888301i \(0.651886\pi\)
\(674\) 16.0000 27.7128i 0.616297 1.06746i
\(675\) 0 0
\(676\) −1.50000 2.59808i −0.0576923 0.0999260i
\(677\) 12.0000 0.461197 0.230599 0.973049i \(-0.425932\pi\)
0.230599 + 0.973049i \(0.425932\pi\)
\(678\) 0 0
\(679\) −25.0000 8.66025i −0.959412 0.332350i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 25.5000 + 44.1673i 0.975730 + 1.69001i 0.677503 + 0.735520i \(0.263062\pi\)
0.298227 + 0.954495i \(0.403605\pi\)
\(684\) 0 0
\(685\) −12.0000 −0.458496
\(686\) −10.0000 15.5885i −0.381802 0.595170i
\(687\) 0 0
\(688\) −5.50000 9.52628i −0.209686 0.363186i
\(689\) 24.0000 0.914327
\(690\) 0 0
\(691\) −46.0000 −1.74992 −0.874961 0.484193i \(-0.839113\pi\)
−0.874961 + 0.484193i \(0.839113\pi\)
\(692\) −24.0000 −0.912343
\(693\) 0 0
\(694\) 27.0000 1.02491
\(695\) −4.00000 −0.151729
\(696\) 0 0
\(697\) 0 0
\(698\) −3.50000 6.06218i −0.132477 0.229457i
\(699\) 0 0
\(700\) −0.500000 2.59808i −0.0188982 0.0981981i
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) 0 0
\(703\) −2.00000 3.46410i −0.0754314 0.130651i
\(704\) 0 0
\(705\) 0 0
\(706\) −12.0000 + 20.7846i −0.451626 + 0.782239i
\(707\) 1.50000 + 7.79423i 0.0564133 + 0.293132i
\(708\) 0 0
\(709\) −19.0000 −0.713560 −0.356780 0.934188i \(-0.616125\pi\)
−0.356780 + 0.934188i \(0.616125\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 7.50000 12.9904i 0.281074 0.486835i
\(713\) −3.00000 5.19615i −0.112351 0.194597i
\(714\) 0 0
\(715\) 0 0
\(716\) −9.00000 15.5885i −0.336346 0.582568i
\(717\) 0 0
\(718\) −3.00000 + 5.19615i −0.111959 + 0.193919i
\(719\) −15.0000 + 25.9808i −0.559406 + 0.968919i 0.438141 + 0.898906i \(0.355637\pi\)
−0.997546 + 0.0700124i \(0.977696\pi\)
\(720\) 0 0
\(721\) 42.5000 + 14.7224i 1.58278 + 0.548292i
\(722\) −7.50000 12.9904i −0.279121 0.483452i
\(723\) 0 0
\(724\) 2.00000 0.0743294
\(725\) −6.00000 −0.222834
\(726\) 0 0
\(727\) 3.50000 + 6.06218i 0.129808 + 0.224834i 0.923602 0.383353i \(-0.125231\pi\)
−0.793794 + 0.608186i \(0.791897\pi\)
\(728\) −2.00000 10.3923i −0.0741249 0.385164i
\(729\) 0 0
\(730\) 1.00000 1.73205i 0.0370117 0.0641061i
\(731\) 0 0
\(732\) 0 0
\(733\) −4.00000 6.92820i −0.147743 0.255899i 0.782650 0.622462i \(-0.213868\pi\)
−0.930393 + 0.366563i \(0.880534\pi\)
\(734\) 8.50000 14.7224i 0.313741 0.543415i
\(735\) 0 0
\(736\) 1.50000 + 2.59808i 0.0552907 + 0.0957664i
\(737\) 0 0
\(738\) 0 0
\(739\) −16.0000 27.7128i −0.588570 1.01943i −0.994420 0.105493i \(-0.966358\pi\)
0.405851 0.913939i \(-0.366975\pi\)
\(740\) 2.00000 0.0735215
\(741\) 0 0
\(742\) 15.0000 + 5.19615i 0.550667 + 0.190757i
\(743\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(744\) 0 0
\(745\) 7.50000 12.9904i 0.274779 0.475931i
\(746\) 7.00000 + 12.1244i 0.256288 + 0.443904i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 11.0000 + 19.0526i 0.401396 + 0.695238i 0.993895 0.110333i \(-0.0351919\pi\)
−0.592499 + 0.805571i \(0.701859\pi\)
\(752\) −3.00000 −0.109399
\(753\) 0 0
\(754\) −24.0000 −0.874028
\(755\) 2.00000 0.0727875
\(756\) 0 0
\(757\) 14.0000 0.508839 0.254419 0.967094i \(-0.418116\pi\)
0.254419 + 0.967094i \(0.418116\pi\)
\(758\) 4.00000 0.145287
\(759\) 0 0
\(760\) −2.00000 −0.0725476
\(761\) 7.50000 + 12.9904i 0.271875 + 0.470901i 0.969342 0.245716i \(-0.0790230\pi\)
−0.697467 + 0.716617i \(0.745690\pi\)
\(762\) 0 0
\(763\) 5.00000 + 1.73205i 0.181012 + 0.0627044i
\(764\) −18.0000 −0.651217
\(765\) 0 0
\(766\) 10.5000 + 18.1865i 0.379380 + 0.657106i
\(767\) −24.0000 + 41.5692i −0.866590 + 1.50098i
\(768\) 0 0
\(769\) −2.50000 + 4.33013i −0.0901523 + 0.156148i −0.907575 0.419890i \(-0.862069\pi\)
0.817423 + 0.576038i \(0.195402\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −22.0000 −0.791797
\(773\) −9.00000 15.5885i −0.323708 0.560678i 0.657542 0.753418i \(-0.271596\pi\)
−0.981250 + 0.192740i \(0.938263\pi\)
\(774\) 0 0
\(775\) −1.00000 + 1.73205i −0.0359211 + 0.0622171i
\(776\) −5.00000 8.66025i −0.179490 0.310885i
\(777\) 0 0
\(778\) −13.5000 + 23.3827i −0.483998 + 0.838310i
\(779\) −6.00000 10.3923i −0.214972 0.372343i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 1.00000 6.92820i 0.0357143 0.247436i
\(785\) 11.0000 + 19.0526i 0.392607 + 0.680015i
\(786\) 0 0
\(787\) −1.00000 −0.0356462 −0.0178231 0.999841i \(-0.505674\pi\)
−0.0178231 + 0.999841i \(0.505674\pi\)
\(788\) 12.0000 0.427482
\(789\) 0 0
\(790\) −2.00000 3.46410i −0.0711568 0.123247i
\(791\) −3.00000 15.5885i −0.106668 0.554262i
\(792\) 0 0
\(793\) −14.0000 + 24.2487i −0.497155 + 0.861097i
\(794\) −14.0000 + 24.2487i −0.496841 + 0.860555i
\(795\) 0 0
\(796\) 2.00000 + 3.46410i 0.0708881 + 0.122782i
\(797\) 9.00000 15.5885i 0.318796 0.552171i −0.661441 0.749997i \(-0.730055\pi\)
0.980237 + 0.197826i \(0.0633881\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.500000 0.866025i 0.0176777 0.0306186i
\(801\) 0 0
\(802\) −7.50000 12.9904i −0.264834 0.458706i
\(803\) 0 0
\(804\) 0 0
\(805\) −1.50000 7.79423i −0.0528681 0.274710i
\(806\) −4.00000 + 6.92820i −0.140894 + 0.244036i
\(807\) 0 0
\(808\) −1.50000 + 2.59808i −0.0527698 + 0.0914000i
\(809\) −19.5000 33.7750i −0.685583 1.18747i −0.973253 0.229736i \(-0.926214\pi\)
0.287670 0.957730i \(-0.407120\pi\)
\(810\) 0 0
\(811\) −16.0000 −0.561836 −0.280918 0.959732i \(-0.590639\pi\)
−0.280918 + 0.959732i \(0.590639\pi\)
\(812\) −15.0000 5.19615i −0.526397 0.182349i
\(813\) 0 0
\(814\) 0 0
\(815\) 20.0000 0.700569
\(816\) 0 0
\(817\) 22.0000 0.769683
\(818\) 1.00000 0.0349642
\(819\) 0 0
\(820\) 6.00000 0.209529
\(821\) 3.00000 0.104701 0.0523504 0.998629i \(-0.483329\pi\)
0.0523504 + 0.998629i \(0.483329\pi\)
\(822\) 0 0
\(823\) 8.00000 0.278862 0.139431 0.990232i \(-0.455473\pi\)
0.139431 + 0.990232i \(0.455473\pi\)
\(824\) 8.50000 + 14.7224i 0.296112 + 0.512880i
\(825\) 0 0
\(826\) −24.0000 + 20.7846i −0.835067 + 0.723189i
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 0 0
\(829\) 12.5000 + 21.6506i 0.434143 + 0.751958i 0.997225 0.0744432i \(-0.0237179\pi\)
−0.563082 + 0.826401i \(0.690385\pi\)
\(830\) 6.00000 10.3923i 0.208263 0.360722i
\(831\) 0 0
\(832\) 2.00000 3.46410i 0.0693375 0.120096i
\(833\) 0 0
\(834\) 0 0
\(835\) 3.00000 0.103819
\(836\) 0 0
\(837\) 0 0
\(838\) −18.0000 + 31.1769i −0.621800 + 1.07699i
\(839\) −9.00000 15.5885i −0.310715 0.538173i 0.667803 0.744338i \(-0.267235\pi\)
−0.978517 + 0.206165i \(0.933902\pi\)
\(840\) 0 0
\(841\) −3.50000 + 6.06218i −0.120690 + 0.209041i
\(842\) 8.50000 + 14.7224i 0.292929 + 0.507369i
\(843\) 0 0
\(844\) −4.00000 + 6.92820i −0.137686 + 0.238479i
\(845\) −1.50000 + 2.59808i −0.0516016 + 0.0893765i
\(846\) 0 0
\(847\) −27.5000 9.52628i −0.944911 0.327327i
\(848\) 3.00000 + 5.19615i 0.103020 + 0.178437i
\(849\) 0 0
\(850\) 0 0
\(851\) 6.00000 0.205677
\(852\) 0 0
\(853\) −4.00000 6.92820i −0.136957 0.237217i 0.789386 0.613897i \(-0.210399\pi\)
−0.926343 + 0.376680i \(0.877066\pi\)
\(854\) −14.0000 + 12.1244i −0.479070 + 0.414887i
\(855\) 0 0
\(856\) 0 0
\(857\) 15.0000 25.9808i 0.512390 0.887486i −0.487507 0.873119i \(-0.662093\pi\)
0.999897 0.0143666i \(-0.00457319\pi\)
\(858\) 0 0
\(859\) −13.0000 22.5167i −0.443554 0.768259i 0.554396 0.832253i \(-0.312949\pi\)
−0.997950 + 0.0639945i \(0.979616\pi\)
\(860\) −5.50000 + 9.52628i −0.187548 + 0.324843i
\(861\) 0 0
\(862\) −15.0000 25.9808i −0.510902 0.884908i
\(863\) −10.5000 + 18.1865i −0.357424 + 0.619077i −0.987530 0.157433i \(-0.949678\pi\)
0.630106 + 0.776509i \(0.283012\pi\)
\(864\) 0 0
\(865\) 12.0000 + 20.7846i 0.408012 + 0.706698i
\(866\) 4.00000 0.135926
\(867\) 0 0
\(868\) −4.00000 + 3.46410i −0.135769 + 0.117579i
\(869\) 0 0
\(870\) 0 0
\(871\) −14.0000 + 24.2487i −0.474372 + 0.821636i
\(872\) 1.00000 + 1.73205i 0.0338643 + 0.0586546i
\(873\) 0 0
\(874\) −6.00000 −0.202953
\(875\) −2.00000 + 1.73205i −0.0676123 + 0.0585540i
\(876\) 0 0
\(877\) 17.0000 + 29.4449i 0.574049 + 0.994282i 0.996144 + 0.0877308i \(0.0279615\pi\)
−0.422095 + 0.906552i \(0.638705\pi\)
\(878\) −8.00000 −0.269987
\(879\) 0 0
\(880\) 0 0
\(881\) −33.0000 −1.11180 −0.555899 0.831250i \(-0.687626\pi\)
−0.555899 + 0.831250i \(0.687626\pi\)
\(882\) 0 0
\(883\) −43.0000 −1.44707 −0.723533 0.690290i \(-0.757483\pi\)
−0.723533 + 0.690290i \(0.757483\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 4.50000 + 7.79423i 0.151095 + 0.261705i 0.931630 0.363407i \(-0.118387\pi\)
−0.780535 + 0.625112i \(0.785053\pi\)
\(888\) 0 0
\(889\) 26.0000 22.5167i 0.872012 0.755185i
\(890\) −15.0000 −0.502801
\(891\) 0 0
\(892\) 9.50000 + 16.4545i 0.318084 + 0.550937i
\(893\) 3.00000 5.19615i 0.100391 0.173883i
\(894\) 0 0
\(895\) −9.00000 + 15.5885i −0.300837 + 0.521065i
\(896\) 2.00000 1.73205i 0.0668153 0.0578638i
\(897\) 0 0
\(898\) 15.0000 0.500556
\(899\) 6.00000 + 10.3923i 0.200111 + 0.346603i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 3.00000 5.19615i 0.0997785 0.172821i
\(905\) −1.00000 1.73205i −0.0332411 0.0575753i
\(906\) 0 0
\(907\) 2.00000 3.46410i 0.0664089 0.115024i −0.830909 0.556408i \(-0.812179\pi\)
0.897318 + 0.441384i \(0.145512\pi\)
\(908\) 12.0000 20.7846i 0.398234 0.689761i
\(909\) 0 0
\(910\) −8.00000 + 6.92820i −0.265197 + 0.229668i
\(911\) −21.0000 36.3731i −0.695761 1.20509i −0.969923 0.243410i \(-0.921734\pi\)
0.274162 0.961683i \(-0.411599\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −26.0000 −0.860004
\(915\) 0 0
\(916\) −14.5000 25.1147i −0.479093 0.829814i
\(917\) 0 0
\(918\) 0 0
\(919\) −28.0000 + 48.4974i −0.923635 + 1.59978i −0.129893 + 0.991528i \(0.541463\pi\)
−0.793742 + 0.608254i \(0.791870\pi\)
\(920\) 1.50000 2.59808i 0.0494535 0.0856560i
\(921\) 0 0
\(922\) −13.5000 23.3827i −0.444599 0.770068i
\(923\) 0 0
\(924\) 0 0
\(925\) −1.00000 1.73205i −0.0328798 0.0569495i
\(926\) 2.50000 4.33013i 0.0821551 0.142297i
\(927\) 0 0
\(928\) −3.00000 5.19615i −0.0984798 0.170572i
\(929\) −15.0000 −0.492134 −0.246067 0.969253i \(-0.579138\pi\)
−0.246067 + 0.969253i \(0.579138\pi\)
\(930\) 0 0
\(931\) 11.0000 + 8.66025i 0.360510 + 0.283828i
\(932\) 9.00000 15.5885i 0.294805 0.510617i
\(933\) 0 0
\(934\) −7.50000 + 12.9904i −0.245407 + 0.425058i
\(935\) 0 0
\(936\) 0 0
\(937\) 44.0000 1.43742 0.718709 0.695311i \(-0.244734\pi\)
0.718709 + 0.695311i \(0.244734\pi\)
\(938\) −14.0000 + 12.1244i −0.457116 + 0.395874i
\(939\) 0 0
\(940\) 1.50000 + 2.59808i 0.0489246 + 0.0847399i
\(941\) −15.0000 −0.488986 −0.244493 0.969651i \(-0.578622\pi\)
−0.244493 + 0.969651i \(0.578622\pi\)
\(942\) 0 0
\(943\) 18.0000 0.586161
\(944\) −12.0000 −0.390567
\(945\) 0 0
\(946\) 0 0
\(947\) −45.0000 −1.46230 −0.731152 0.682215i \(-0.761017\pi\)
−0.731152 + 0.682215i \(0.761017\pi\)
\(948\) 0 0
\(949\) −8.00000 −0.259691
\(950\) 1.00000 + 1.73205i 0.0324443 + 0.0561951i
\(951\) 0 0
\(952\) 0 0
\(953\) −18.0000 −0.583077 −0.291539 0.956559i \(-0.594167\pi\)
−0.291539 + 0.956559i \(0.594167\pi\)
\(954\) 0 0
\(955\) 9.00000 + 15.5885i 0.291233 + 0.504431i
\(956\) −12.0000 + 20.7846i −0.388108 + 0.672222i
\(957\) 0 0
\(958\) −9.00000 + 15.5885i −0.290777 + 0.503640i
\(959\) 6.00000 + 31.1769i 0.193750 + 1.00676i
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) −4.00000 6.92820i −0.128965 0.223374i
\(963\) 0 0
\(964\) 9.50000 16.4545i 0.305974 0.529963i
\(965\) 11.0000 + 19.0526i 0.354103 + 0.613324i
\(966\) 0 0
\(967\) 0.500000 0.866025i 0.0160789 0.0278495i −0.857874 0.513860i \(-0.828215\pi\)
0.873953 + 0.486011i \(0.161548\pi\)
\(968\) −5.50000 9.52628i −0.176777 0.306186i
\(969\) 0 0
\(970\) −5.00000 + 8.66025i −0.160540 + 0.278064i
\(971\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(972\) 0 0
\(973\) 2.00000 + 10.3923i 0.0641171 + 0.333162i
\(974\) 10.0000 + 17.3205i 0.320421 + 0.554985i
\(975\) 0 0
\(976\) −7.00000 −0.224065
\(977\) −36.0000 −1.15174 −0.575871 0.817541i \(-0.695337\pi\)
−0.575871 + 0.817541i \(0.695337\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −6.50000 + 2.59808i −0.207635 + 0.0829925i
\(981\) 0 0
\(982\) −6.00000 + 10.3923i −0.191468 + 0.331632i
\(983\) 12.0000 20.7846i 0.382741 0.662926i −0.608712 0.793391i \(-0.708314\pi\)
0.991453 + 0.130465i \(0.0416470\pi\)
\(984\) 0 0
\(985\) −6.00000 10.3923i −0.191176 0.331126i
\(986\) 0 0
\(987\) 0 0
\(988\) 4.00000 + 6.92820i 0.127257 + 0.220416i
\(989\) −16.5000 + 28.5788i −0.524669 + 0.908754i
\(990\) 0 0
\(991\) −28.0000 48.4974i −0.889449 1.54057i −0.840528 0.541769i \(-0.817755\pi\)
−0.0489218 0.998803i \(-0.515578\pi\)
\(992\) −2.00000 −0.0635001
\(993\) 0 0
\(994\) 0 0
\(995\) 2.00000 3.46410i 0.0634043 0.109819i
\(996\) 0 0
\(997\) −7.00000 + 12.1244i −0.221692 + 0.383982i −0.955322 0.295567i \(-0.904491\pi\)
0.733630 + 0.679549i \(0.237825\pi\)
\(998\) −14.0000 24.2487i −0.443162 0.767580i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1890.2.i.a.1171.1 2
3.2 odd 2 630.2.i.d.121.1 2
7.4 even 3 1890.2.l.d.361.1 2
9.2 odd 6 630.2.l.b.331.1 yes 2
9.7 even 3 1890.2.l.d.1801.1 2
21.11 odd 6 630.2.l.b.571.1 yes 2
63.11 odd 6 630.2.i.d.151.1 yes 2
63.25 even 3 inner 1890.2.i.a.991.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.i.d.121.1 2 3.2 odd 2
630.2.i.d.151.1 yes 2 63.11 odd 6
630.2.l.b.331.1 yes 2 9.2 odd 6
630.2.l.b.571.1 yes 2 21.11 odd 6
1890.2.i.a.991.1 2 63.25 even 3 inner
1890.2.i.a.1171.1 2 1.1 even 1 trivial
1890.2.l.d.361.1 2 7.4 even 3
1890.2.l.d.1801.1 2 9.7 even 3