L(s) = 1 | − 3·3-s + 6·5-s + 6·9-s − 18·15-s + 6·17-s + 17·25-s − 9·27-s + 14·37-s + 12·41-s + 8·43-s + 36·45-s + 6·47-s − 18·51-s − 6·59-s + 10·67-s − 51·75-s − 2·79-s + 9·81-s − 24·83-s + 36·85-s − 18·89-s − 18·101-s − 34·109-s − 42·111-s − 5·121-s − 36·123-s + 18·125-s + ⋯ |
L(s) = 1 | − 1.73·3-s + 2.68·5-s + 2·9-s − 4.64·15-s + 1.45·17-s + 17/5·25-s − 1.73·27-s + 2.30·37-s + 1.87·41-s + 1.21·43-s + 5.36·45-s + 0.875·47-s − 2.52·51-s − 0.781·59-s + 1.22·67-s − 5.88·75-s − 0.225·79-s + 81-s − 2.63·83-s + 3.90·85-s − 1.90·89-s − 1.79·101-s − 3.25·109-s − 3.98·111-s − 0.454·121-s − 3.24·123-s + 1.60·125-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 345744 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 345744 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.003303258\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.003303258\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.67839478268227198784945148446, −10.63830359910547817457388253588, −9.876990144961881343803408571985, −9.839388205096241273268225224864, −9.353742456793621866110243868330, −9.188060818182894902548537176039, −8.154910938720373893466177188646, −7.75809730195670918914825514617, −7.07081749686318347383350850786, −6.68557620828769834040664009990, −6.06005870446595182910509290212, −5.87231272390842427803038745803, −5.48464513632875650463490222693, −5.40713197550317710214437206010, −4.41003334955479520884473913263, −4.13975689088732262430549243718, −2.80382599225240817578804327978, −2.43104883311192426457390811041, −1.43085290930777930662093663830, −1.04010036322101432334451815703,
1.04010036322101432334451815703, 1.43085290930777930662093663830, 2.43104883311192426457390811041, 2.80382599225240817578804327978, 4.13975689088732262430549243718, 4.41003334955479520884473913263, 5.40713197550317710214437206010, 5.48464513632875650463490222693, 5.87231272390842427803038745803, 6.06005870446595182910509290212, 6.68557620828769834040664009990, 7.07081749686318347383350850786, 7.75809730195670918914825514617, 8.154910938720373893466177188646, 9.188060818182894902548537176039, 9.353742456793621866110243868330, 9.839388205096241273268225224864, 9.876990144961881343803408571985, 10.63830359910547817457388253588, 10.67839478268227198784945148446