Properties

Label 2-5800-1.1-c1-0-37
Degree $2$
Conductor $5800$
Sign $1$
Analytic cond. $46.3132$
Root an. cond. $6.80538$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 2·7-s + 9-s + 4·11-s + 4·13-s − 4·17-s − 4·19-s − 4·21-s + 6·23-s + 4·27-s − 29-s − 8·33-s + 8·37-s − 8·39-s + 10·41-s − 2·43-s + 6·47-s − 3·49-s + 8·51-s + 4·53-s + 8·57-s − 4·59-s − 2·61-s + 2·63-s − 2·67-s − 12·69-s + 12·73-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.755·7-s + 1/3·9-s + 1.20·11-s + 1.10·13-s − 0.970·17-s − 0.917·19-s − 0.872·21-s + 1.25·23-s + 0.769·27-s − 0.185·29-s − 1.39·33-s + 1.31·37-s − 1.28·39-s + 1.56·41-s − 0.304·43-s + 0.875·47-s − 3/7·49-s + 1.12·51-s + 0.549·53-s + 1.05·57-s − 0.520·59-s − 0.256·61-s + 0.251·63-s − 0.244·67-s − 1.44·69-s + 1.40·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5800\)    =    \(2^{3} \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(46.3132\)
Root analytic conductor: \(6.80538\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.560053468\)
\(L(\frac12)\) \(\approx\) \(1.560053468\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
29 \( 1 + T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 12 T + p T^{2} \) 1.73.am
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.174257136877773976451954995003, −7.20846753700680099317923878653, −6.44687913621220571723080353385, −6.11917312474781851084428157080, −5.29244087237544031849181444036, −4.43716165354727915133976653549, −4.02517656701588947831444453550, −2.73970620346345026101716948672, −1.56388138400304117041442392121, −0.75927261610885969979763089229, 0.75927261610885969979763089229, 1.56388138400304117041442392121, 2.73970620346345026101716948672, 4.02517656701588947831444453550, 4.43716165354727915133976653549, 5.29244087237544031849181444036, 6.11917312474781851084428157080, 6.44687913621220571723080353385, 7.20846753700680099317923878653, 8.174257136877773976451954995003

Graph of the $Z$-function along the critical line