| L(s) = 1 | + 3-s + 2·5-s + 2·7-s − 9-s − 11-s + 5·13-s + 2·15-s − 5·17-s + 6·19-s + 2·21-s + 2·23-s + 3·25-s + 29-s − 33-s + 4·35-s + 12·37-s + 5·39-s + 2·41-s − 10·43-s − 2·45-s + 5·47-s + 3·49-s − 5·51-s − 2·53-s − 2·55-s + 6·57-s + 8·59-s + ⋯ |
| L(s) = 1 | + 0.577·3-s + 0.894·5-s + 0.755·7-s − 1/3·9-s − 0.301·11-s + 1.38·13-s + 0.516·15-s − 1.21·17-s + 1.37·19-s + 0.436·21-s + 0.417·23-s + 3/5·25-s + 0.185·29-s − 0.174·33-s + 0.676·35-s + 1.97·37-s + 0.800·39-s + 0.312·41-s − 1.52·43-s − 0.298·45-s + 0.729·47-s + 3/7·49-s − 0.700·51-s − 0.274·53-s − 0.269·55-s + 0.794·57-s + 1.04·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 313600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 313600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(3.082828583\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.082828583\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.84887930448418842093346746469, −10.71852278879301063064640206695, −9.996872262174677903093072110117, −9.665051256331339298262348336268, −9.108919882625151785185346284674, −8.827835147304446976532813852039, −8.351613035344276371663628470056, −8.092656691658838401609900676659, −7.40369311082293681903432731110, −7.00222461019926043667084908705, −6.31541053035408999850880288606, −6.02299401560137118713179867984, −5.37801526421910066501971091992, −5.04595920059395037042341789054, −4.30353083834975357581212378203, −3.84123208348491185714193855596, −2.78921232307861910493038679196, −2.78687918473758351130938627062, −1.74497648316645092426880643265, −1.10076043135417396284922284686,
1.10076043135417396284922284686, 1.74497648316645092426880643265, 2.78687918473758351130938627062, 2.78921232307861910493038679196, 3.84123208348491185714193855596, 4.30353083834975357581212378203, 5.04595920059395037042341789054, 5.37801526421910066501971091992, 6.02299401560137118713179867984, 6.31541053035408999850880288606, 7.00222461019926043667084908705, 7.40369311082293681903432731110, 8.092656691658838401609900676659, 8.351613035344276371663628470056, 8.827835147304446976532813852039, 9.108919882625151785185346284674, 9.665051256331339298262348336268, 9.996872262174677903093072110117, 10.71852278879301063064640206695, 10.84887930448418842093346746469