Properties

Label 560.2.a.i
Level $560$
Weight $2$
Character orbit 560.a
Self dual yes
Analytic conductor $4.472$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [560,2,Mod(1,560)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("560.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(560, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 560.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,1,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.47162251319\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{3} + q^{5} + q^{7} + (\beta + 1) q^{9} - \beta q^{11} + (\beta + 2) q^{13} + \beta q^{15} + ( - \beta - 2) q^{17} + ( - 2 \beta + 4) q^{19} + \beta q^{21} + 2 \beta q^{23} + q^{25} + ( - \beta + 4) q^{27} + \cdots + ( - 2 \beta - 4) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} + 2 q^{5} + 2 q^{7} + 3 q^{9} - q^{11} + 5 q^{13} + q^{15} - 5 q^{17} + 6 q^{19} + q^{21} + 2 q^{23} + 2 q^{25} + 7 q^{27} + q^{29} - 9 q^{33} + 2 q^{35} + 12 q^{37} + 11 q^{39} + 2 q^{41}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.56155
2.56155
0 −1.56155 0 1.00000 0 1.00000 0 −0.561553 0
1.2 0 2.56155 0 1.00000 0 1.00000 0 3.56155 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 560.2.a.i 2
3.b odd 2 1 5040.2.a.bt 2
4.b odd 2 1 35.2.a.b 2
5.b even 2 1 2800.2.a.bi 2
5.c odd 4 2 2800.2.g.t 4
7.b odd 2 1 3920.2.a.bs 2
8.b even 2 1 2240.2.a.bd 2
8.d odd 2 1 2240.2.a.bh 2
12.b even 2 1 315.2.a.e 2
20.d odd 2 1 175.2.a.f 2
20.e even 4 2 175.2.b.b 4
28.d even 2 1 245.2.a.d 2
28.f even 6 2 245.2.e.h 4
28.g odd 6 2 245.2.e.i 4
44.c even 2 1 4235.2.a.m 2
52.b odd 2 1 5915.2.a.l 2
60.h even 2 1 1575.2.a.p 2
60.l odd 4 2 1575.2.d.e 4
84.h odd 2 1 2205.2.a.x 2
140.c even 2 1 1225.2.a.s 2
140.j odd 4 2 1225.2.b.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.2.a.b 2 4.b odd 2 1
175.2.a.f 2 20.d odd 2 1
175.2.b.b 4 20.e even 4 2
245.2.a.d 2 28.d even 2 1
245.2.e.h 4 28.f even 6 2
245.2.e.i 4 28.g odd 6 2
315.2.a.e 2 12.b even 2 1
560.2.a.i 2 1.a even 1 1 trivial
1225.2.a.s 2 140.c even 2 1
1225.2.b.f 4 140.j odd 4 2
1575.2.a.p 2 60.h even 2 1
1575.2.d.e 4 60.l odd 4 2
2205.2.a.x 2 84.h odd 2 1
2240.2.a.bd 2 8.b even 2 1
2240.2.a.bh 2 8.d odd 2 1
2800.2.a.bi 2 5.b even 2 1
2800.2.g.t 4 5.c odd 4 2
3920.2.a.bs 2 7.b odd 2 1
4235.2.a.m 2 44.c even 2 1
5040.2.a.bt 2 3.b odd 2 1
5915.2.a.l 2 52.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(560))\):

\( T_{3}^{2} - T_{3} - 4 \) Copy content Toggle raw display
\( T_{11}^{2} + T_{11} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - T - 4 \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( (T - 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + T - 4 \) Copy content Toggle raw display
$13$ \( T^{2} - 5T + 2 \) Copy content Toggle raw display
$17$ \( T^{2} + 5T + 2 \) Copy content Toggle raw display
$19$ \( T^{2} - 6T - 8 \) Copy content Toggle raw display
$23$ \( T^{2} - 2T - 16 \) Copy content Toggle raw display
$29$ \( T^{2} - T - 38 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( (T - 6)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 2T - 16 \) Copy content Toggle raw display
$43$ \( T^{2} + 10T + 8 \) Copy content Toggle raw display
$47$ \( T^{2} - 5T - 32 \) Copy content Toggle raw display
$53$ \( T^{2} + 2T - 16 \) Copy content Toggle raw display
$59$ \( (T - 4)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 6T - 144 \) Copy content Toggle raw display
$67$ \( T^{2} + 4T - 64 \) Copy content Toggle raw display
$71$ \( (T + 8)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 8T - 52 \) Copy content Toggle raw display
$79$ \( T^{2} - 9T + 16 \) Copy content Toggle raw display
$83$ \( (T + 4)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 6T - 8 \) Copy content Toggle raw display
$97$ \( T^{2} + 9T - 86 \) Copy content Toggle raw display
show more
show less