Properties

Label 2.17.f_bk
Base field $\F_{17}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{17}$
Dimension:  $2$
L-polynomial:  $1 + 5 x + 36 x^{2} + 85 x^{3} + 289 x^{4}$
Frobenius angles:  $\pm0.516932371821$, $\pm0.686581827611$
Angle rank:  $2$ (numerical)
Number field:  4.0.57800.1
Galois group:  $D_{4}$
Jacobians:  $14$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $416$ $98176$ $23364224$ $6962249216$ $2017594392736$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $23$ $337$ $4754$ $83361$ $1420983$ $24137758$ $410357159$ $6975609153$ $118587611378$ $2015998938897$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 14 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{17}$.

Endomorphism algebra over $\F_{17}$
The endomorphism algebra of this simple isogeny class is 4.0.57800.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.17.af_bk$2$(not in LMFDB)