L(s) = 1 | − 2·2-s + 3·4-s − 3·5-s + 2·7-s − 4·8-s + 6·10-s + 11-s + 3·13-s − 4·14-s + 5·16-s + 17-s − 19-s − 9·20-s − 2·22-s + 16·23-s + 25-s − 6·26-s + 6·28-s + 6·29-s − 2·31-s − 6·32-s − 2·34-s − 6·35-s + 2·38-s + 12·40-s + 8·41-s − 10·43-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s − 1.34·5-s + 0.755·7-s − 1.41·8-s + 1.89·10-s + 0.301·11-s + 0.832·13-s − 1.06·14-s + 5/4·16-s + 0.242·17-s − 0.229·19-s − 2.01·20-s − 0.426·22-s + 3.33·23-s + 1/5·25-s − 1.17·26-s + 1.13·28-s + 1.11·29-s − 0.359·31-s − 1.06·32-s − 0.342·34-s − 1.01·35-s + 0.324·38-s + 1.89·40-s + 1.24·41-s − 1.52·43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 311364 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 311364 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8840645809\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8840645809\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.97912439437075354806411860759, −10.83467523404826639021220203717, −9.848469365548366722757573321205, −9.841125431601894532678622253037, −8.963181257994207900329427629596, −8.770020467204906007673979498594, −8.380997860273889822548624559224, −8.050715360883276528977195498424, −7.39483497183582346804446643075, −7.29264803347699720822342886900, −6.51314074706705780381261081986, −6.42683845425799820231756015098, −5.25836899397749777045352152287, −5.10805011182742789030922859556, −4.26263179516028591932408524640, −3.64227369316941992466762596184, −3.14140494476523898965119297517, −2.39487619836817467901745693046, −1.33299065917303741946874594155, −0.789388517802265969268664674090,
0.789388517802265969268664674090, 1.33299065917303741946874594155, 2.39487619836817467901745693046, 3.14140494476523898965119297517, 3.64227369316941992466762596184, 4.26263179516028591932408524640, 5.10805011182742789030922859556, 5.25836899397749777045352152287, 6.42683845425799820231756015098, 6.51314074706705780381261081986, 7.29264803347699720822342886900, 7.39483497183582346804446643075, 8.050715360883276528977195498424, 8.380997860273889822548624559224, 8.770020467204906007673979498594, 8.963181257994207900329427629596, 9.841125431601894532678622253037, 9.848469365548366722757573321205, 10.83467523404826639021220203717, 10.97912439437075354806411860759