Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 6 x + 110 x^{2} + 354 x^{3} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.476708237323$, $\pm0.653469352356$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.3142008.1 |
Galois group: | $D_{4}$ |
Jacobians: | $208$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3952$ | $12772864$ | $42036590128$ | $146779213381632$ | $511128597483495472$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $66$ | $3666$ | $204678$ | $12113134$ | $714940866$ | $42180507330$ | $2488653760806$ | $146830435696030$ | $8662995531394434$ | $511116754520009586$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 208 curves (of which all are hyperelliptic):
- $y^2=37 x^6+38 x^5+44 x^4+18 x^3+25 x^2+22 x+50$
- $y^2=12 x^6+47 x^5+41 x^4+18 x^3+3 x^2+12 x+27$
- $y^2=29 x^6+32 x^5+47 x^4+51 x^3+18 x^2+17 x+3$
- $y^2=9 x^6+52 x^5+26 x^4+46 x^3+28 x^2+35 x+6$
- $y^2=42 x^6+29 x^5+58 x^4+3 x^2+31 x+57$
- $y^2=34 x^6+39 x^5+6 x^4+34 x^3+41 x^2+41 x+3$
- $y^2=43 x^5+9 x^4+4 x^3+47 x^2+20 x+31$
- $y^2=35 x^6+22 x^5+48 x^4+36 x^3+38 x^2+52 x+32$
- $y^2=7 x^6+4 x^5+39 x^4+4 x^3+24 x^2+42 x+44$
- $y^2=14 x^6+58 x^5+32 x^4+53 x^3+36 x^2+16 x+39$
- $y^2=x^6+51 x^5+11 x^4+46 x^3+44 x^2+16 x+20$
- $y^2=27 x^6+26 x^5+58 x^4+40 x^3+37 x^2+22 x+25$
- $y^2=4 x^6+54 x^5+57 x^4+5 x^3+17 x^2+56 x+29$
- $y^2=38 x^6+53 x^5+18 x^4+52 x^3+11 x^2+8 x+8$
- $y^2=25 x^6+24 x^5+32 x^4+57 x^2+18 x+42$
- $y^2=18 x^6+46 x^5+17 x^4+32 x^3+29 x^2+9 x+3$
- $y^2=9 x^6+28 x^5+56 x^4+55 x^3+15 x^2+16 x+54$
- $y^2=36 x^6+8 x^5+3 x^4+50 x^3+42 x^2+2 x+57$
- $y^2=x^6+55 x^5+5 x^4+26 x^3+3 x^2+x+15$
- $y^2=4 x^6+23 x^5+17 x^4+57 x^3+57 x^2+37 x+38$
- and 188 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is 4.0.3142008.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.ag_eg | $2$ | (not in LMFDB) |