Properties

Label 558.2.a.i
Level $558$
Weight $2$
Character orbit 558.a
Self dual yes
Analytic conductor $4.456$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [558,2,Mod(1,558)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(558, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("558.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 558 = 2 \cdot 3^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 558.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,0,2,-3,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.45565243279\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 186)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{4} + ( - \beta - 1) q^{5} + ( - 2 \beta + 2) q^{7} - q^{8} + (\beta + 1) q^{10} + ( - \beta + 1) q^{11} + (\beta + 1) q^{13} + (2 \beta - 2) q^{14} + q^{16} + (3 \beta - 1) q^{17} + (\beta - 1) q^{19}+ \cdots + (4 \beta - 13) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - 3 q^{5} + 2 q^{7} - 2 q^{8} + 3 q^{10} + q^{11} + 3 q^{13} - 2 q^{14} + 2 q^{16} + q^{17} - q^{19} - 3 q^{20} - q^{22} + 16 q^{23} + 3 q^{25} - 3 q^{26} + 2 q^{28} + 6 q^{29}+ \cdots - 22 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.56155
−1.56155
−1.00000 0 1.00000 −3.56155 0 −3.12311 −1.00000 0 3.56155
1.2 −1.00000 0 1.00000 0.561553 0 5.12311 −1.00000 0 −0.561553
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(31\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 558.2.a.i 2
3.b odd 2 1 186.2.a.d 2
4.b odd 2 1 4464.2.a.bb 2
12.b even 2 1 1488.2.a.r 2
15.d odd 2 1 4650.2.a.cd 2
15.e even 4 2 4650.2.d.bc 4
21.c even 2 1 9114.2.a.be 2
24.f even 2 1 5952.2.a.bk 2
24.h odd 2 1 5952.2.a.bs 2
93.c even 2 1 5766.2.a.v 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
186.2.a.d 2 3.b odd 2 1
558.2.a.i 2 1.a even 1 1 trivial
1488.2.a.r 2 12.b even 2 1
4464.2.a.bb 2 4.b odd 2 1
4650.2.a.cd 2 15.d odd 2 1
4650.2.d.bc 4 15.e even 4 2
5766.2.a.v 2 93.c even 2 1
5952.2.a.bk 2 24.f even 2 1
5952.2.a.bs 2 24.h odd 2 1
9114.2.a.be 2 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(558))\):

\( T_{5}^{2} + 3T_{5} - 2 \) Copy content Toggle raw display
\( T_{7}^{2} - 2T_{7} - 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 3T - 2 \) Copy content Toggle raw display
$7$ \( T^{2} - 2T - 16 \) Copy content Toggle raw display
$11$ \( T^{2} - T - 4 \) Copy content Toggle raw display
$13$ \( T^{2} - 3T - 2 \) Copy content Toggle raw display
$17$ \( T^{2} - T - 38 \) Copy content Toggle raw display
$19$ \( T^{2} + T - 4 \) Copy content Toggle raw display
$23$ \( (T - 8)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 6T - 8 \) Copy content Toggle raw display
$31$ \( (T + 1)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 68 \) Copy content Toggle raw display
$41$ \( T^{2} - 8T - 52 \) Copy content Toggle raw display
$43$ \( T^{2} + 10T + 8 \) Copy content Toggle raw display
$47$ \( T^{2} + 5T - 32 \) Copy content Toggle raw display
$53$ \( (T - 2)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 6T - 8 \) Copy content Toggle raw display
$61$ \( T^{2} - 3T - 2 \) Copy content Toggle raw display
$67$ \( T^{2} - 13T + 4 \) Copy content Toggle raw display
$71$ \( T^{2} - 7T + 8 \) Copy content Toggle raw display
$73$ \( (T - 10)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 5T - 32 \) Copy content Toggle raw display
$83$ \( T^{2} + 5T - 100 \) Copy content Toggle raw display
$89$ \( T^{2} + 16T - 4 \) Copy content Toggle raw display
$97$ \( T^{2} + 9T - 86 \) Copy content Toggle raw display
show more
show less