Invariants
Base field: | $\F_{83}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 5 x + 66 x^{2} + 415 x^{3} + 6889 x^{4}$ |
Frobenius angles: | $\pm0.359039831883$, $\pm0.748119646374$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.3289109.1 |
Galois group: | $D_{4}$ |
Jacobians: | $260$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7376$ | $48209536$ | $327157198784$ | $2253076328884736$ | $15515306474174385136$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $89$ | $6997$ | $572168$ | $47474841$ | $3938854119$ | $326939320918$ | $27136059089333$ | $2252292224710833$ | $186940256491839224$ | $15516041185463585397$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 260 curves (of which all are hyperelliptic):
- $y^2=45 x^6+49 x^5+81 x^4+39 x^3+61 x^2+14 x+67$
- $y^2=64 x^6+9 x^5+16 x^4+77 x^3+60 x^2+45 x+12$
- $y^2=68 x^6+5 x^5+4 x^4+66 x^3+35 x^2+31 x+68$
- $y^2=72 x^6+52 x^5+54 x^4+28 x^3+41 x^2+22 x+27$
- $y^2=66 x^6+24 x^5+32 x^4+69 x^3+66 x^2+64 x+11$
- $y^2=27 x^6+45 x^5+38 x^4+44 x^3+27 x^2+14 x+72$
- $y^2=39 x^6+69 x^5+51 x^4+38 x^3+9 x^2+7 x+19$
- $y^2=71 x^6+69 x^5+27 x^4+4 x^3+6 x^2+44 x+67$
- $y^2=76 x^6+55 x^4+31 x^3+20 x^2+25 x+51$
- $y^2=31 x^6+50 x^5+79 x^4+17 x^3+76 x^2+65 x+64$
- $y^2=70 x^6+60 x^5+21 x^4+30 x^3+3 x^2+48 x$
- $y^2=56 x^6+43 x^5+33 x^4+23 x^3+21 x^2+63 x+15$
- $y^2=69 x^6+28 x^5+81 x^4+20 x^3+79 x^2+65 x+62$
- $y^2=28 x^6+75 x^5+18 x^4+65 x^3+56 x^2+60 x+58$
- $y^2=15 x^6+36 x^5+67 x^4+71 x^3+46 x^2+9 x+43$
- $y^2=5 x^6+58 x^5+49 x^4+63 x^3+53 x^2+74 x+41$
- $y^2=30 x^6+62 x^5+74 x^4+13 x^3+39 x^2+24 x+50$
- $y^2=29 x^6+66 x^5+47 x^4+11 x^3+74 x^2+6 x+47$
- $y^2=73 x^6+47 x^5+32 x^4+27 x^3+79 x^2+11 x+79$
- $y^2=66 x^6+13 x^5+78 x^4+37 x^3+44 x^2+61 x+29$
- and 240 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$The endomorphism algebra of this simple isogeny class is 4.0.3289109.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.83.af_co | $2$ | (not in LMFDB) |