Properties

Label 4-72e4-1.1-c1e2-0-12
Degree $4$
Conductor $26873856$
Sign $1$
Analytic cond. $1713.50$
Root an. cond. $6.43385$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·11-s + 10·13-s + 18·23-s + 7·25-s − 4·37-s + 6·47-s + 11·49-s + 6·59-s + 2·61-s + 24·71-s − 4·73-s − 30·83-s − 10·97-s − 24·107-s + 28·109-s + 5·121-s + 127-s + 131-s + 137-s + 139-s − 60·143-s + 149-s + 151-s + 157-s + 163-s + 167-s + 49·169-s + ⋯
L(s)  = 1  − 1.80·11-s + 2.77·13-s + 3.75·23-s + 7/5·25-s − 0.657·37-s + 0.875·47-s + 11/7·49-s + 0.781·59-s + 0.256·61-s + 2.84·71-s − 0.468·73-s − 3.29·83-s − 1.01·97-s − 2.32·107-s + 2.68·109-s + 5/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 5.01·143-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 3.76·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26873856 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26873856 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(26873856\)    =    \(2^{12} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(1713.50\)
Root analytic conductor: \(6.43385\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 26873856,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.917234512\)
\(L(\frac12)\) \(\approx\) \(3.917234512\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( 1 - 7 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
11$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
29$C_2^2$ \( 1 - 55 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 35 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 55 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 59 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 59 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
79$C_2^2$ \( 1 - 83 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + 15 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.465228881280003051578712643536, −8.139653863252550983731007187116, −7.72323171442808617548991375098, −7.14596048291568799543740861323, −6.89850090292395935613614161426, −6.84645472681785116933849835324, −6.24778771839563916872662210302, −5.62516165285240581875011394205, −5.56302419554584969429267005843, −5.22441423566521426453473919341, −4.77871361540091166158362167198, −4.40117098225425295021103046427, −3.77751958887345520929614762693, −3.49281637379518849996451206796, −3.00719446299397611625270487578, −2.73488000083933898891814037984, −2.31659759631235003652655109615, −1.36142583811054545957352483151, −1.10181115834356533336870162408, −0.63295805193117981292190926546, 0.63295805193117981292190926546, 1.10181115834356533336870162408, 1.36142583811054545957352483151, 2.31659759631235003652655109615, 2.73488000083933898891814037984, 3.00719446299397611625270487578, 3.49281637379518849996451206796, 3.77751958887345520929614762693, 4.40117098225425295021103046427, 4.77871361540091166158362167198, 5.22441423566521426453473919341, 5.56302419554584969429267005843, 5.62516165285240581875011394205, 6.24778771839563916872662210302, 6.84645472681785116933849835324, 6.89850090292395935613614161426, 7.14596048291568799543740861323, 7.72323171442808617548991375098, 8.139653863252550983731007187116, 8.465228881280003051578712643536

Graph of the $Z$-function along the critical line