Invariants
Base field: | $\F_{83}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 15 x + 83 x^{2} )^{2}$ |
$1 + 30 x + 391 x^{2} + 2490 x^{3} + 6889 x^{4}$ | |
Frobenius angles: | $\pm0.807831363318$, $\pm0.807831363318$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $18$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9801$ | $46662561$ | $326529959184$ | $2253269789767161$ | $15515059798626412761$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $114$ | $6772$ | $571068$ | $47478916$ | $3938791494$ | $326942401318$ | $27136041249858$ | $2252292209915908$ | $186940256409288324$ | $15516041171924154772$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):
- $y^2=73 x^6+60 x^5+62 x^4+8 x^3+62 x^2+60 x+73$
- $y^2=x^6+76 x^5+19 x^4+19 x^2+76 x+1$
- $y^2=9 x^6+26 x^5+48 x^4+60 x^3+42 x+48$
- $y^2=30 x^6+32 x^5+34 x^4+23 x^3+47 x^2+60 x+21$
- $y^2=2 x^6+4 x^5+13 x^4+49 x^3+78 x^2+26 x+11$
- $y^2=30 x^6+26 x^5+4 x^4+15 x^3+4 x^2+26 x+30$
- $y^2=63 x^6+52 x^5+59 x^4+25 x^3+59 x^2+52 x+63$
- $y^2=15 x^6+81 x^5+72 x^4+45 x^3+72 x^2+81 x+15$
- $y^2=31 x^6+34 x^5+16 x^4+39 x^3+16 x^2+34 x+31$
- $y^2=73 x^6+29 x^5+67 x^4+35 x^3+21 x^2+16 x+44$
- $y^2=25 x^6+48 x^5+57 x^4+63 x^3+46 x^2+81 x+75$
- $y^2=26 x^6+43 x^5+14 x^4+46 x^3+14 x^2+43 x+26$
- $y^2=69 x^6+72 x^5+39 x^4+40 x^3+45 x^2+5 x+59$
- $y^2=72 x^6+75 x^5+64 x^4+52 x^3+58 x^2+58 x+75$
- $y^2=70 x^6+24 x^5+43 x^4+61 x^3+26 x^2+6 x+75$
- $y^2=48 x^6+79 x^5+58 x^4+60 x^3+81 x^2+27 x+60$
- $y^2=32 x^6+57 x^5+61 x^4+78 x^3+61 x^2+57 x+32$
- $y^2=38 x^6+82 x^5+63 x^4+8 x^3+63 x^2+82 x+38$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$The isogeny class factors as 1.83.p 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-107}) \)$)$ |
Base change
This is a primitive isogeny class.