Properties

Label 2-5100-1.1-c1-0-43
Degree $2$
Conductor $5100$
Sign $-1$
Analytic cond. $40.7237$
Root an. cond. $6.38151$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 3·7-s + 9-s + 3·11-s − 17-s − 7·19-s − 3·21-s − 4·23-s − 27-s + 29-s − 10·31-s − 3·33-s + 37-s − 3·41-s + 10·43-s − 3·47-s + 2·49-s + 51-s − 9·53-s + 7·57-s − 10·59-s − 12·61-s + 3·63-s − 10·67-s + 4·69-s − 13·73-s + 9·77-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.13·7-s + 1/3·9-s + 0.904·11-s − 0.242·17-s − 1.60·19-s − 0.654·21-s − 0.834·23-s − 0.192·27-s + 0.185·29-s − 1.79·31-s − 0.522·33-s + 0.164·37-s − 0.468·41-s + 1.52·43-s − 0.437·47-s + 2/7·49-s + 0.140·51-s − 1.23·53-s + 0.927·57-s − 1.30·59-s − 1.53·61-s + 0.377·63-s − 1.22·67-s + 0.481·69-s − 1.52·73-s + 1.02·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5100\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(40.7237\)
Root analytic conductor: \(6.38151\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5100,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
17 \( 1 + T \)
good7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + p T^{2} \) 1.13.a
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 13 T + p T^{2} \) 1.73.n
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.75131345520724576689416812048, −7.23485875315271199981423414561, −6.16793394019973628172404866358, −5.93958451969118565483249189289, −4.65902178664894086067273107877, −4.46161374092450945700867361980, −3.45677028797570232560198048618, −2.05597579960511588497965593428, −1.48684886570517259415575052923, 0, 1.48684886570517259415575052923, 2.05597579960511588497965593428, 3.45677028797570232560198048618, 4.46161374092450945700867361980, 4.65902178664894086067273107877, 5.93958451969118565483249189289, 6.16793394019973628172404866358, 7.23485875315271199981423414561, 7.75131345520724576689416812048

Graph of the $Z$-function along the critical line