L(s) = 1 | + 2·2-s + 4-s − 4·7-s − 8·13-s − 8·14-s + 16-s − 8·17-s + 2·19-s + 4·23-s − 16·26-s − 4·28-s + 4·29-s − 4·31-s − 2·32-s − 16·34-s − 8·37-s + 4·38-s + 12·41-s − 4·43-s + 8·46-s + 12·47-s − 8·52-s + 8·53-s + 8·58-s − 8·62-s − 11·64-s − 24·67-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 1/2·4-s − 1.51·7-s − 2.21·13-s − 2.13·14-s + 1/4·16-s − 1.94·17-s + 0.458·19-s + 0.834·23-s − 3.13·26-s − 0.755·28-s + 0.742·29-s − 0.718·31-s − 0.353·32-s − 2.74·34-s − 1.31·37-s + 0.648·38-s + 1.87·41-s − 0.609·43-s + 1.17·46-s + 1.75·47-s − 1.10·52-s + 1.09·53-s + 1.05·58-s − 1.01·62-s − 1.37·64-s − 2.93·67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 18275625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18275625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.133914199365458465948147901354, −7.51115303589102797161468777280, −7.33414622823635359660799475023, −7.06815547519602159872205392482, −6.76978093544789675049433869471, −6.28748234578207812488485428215, −5.84170730043084026177542663517, −5.66043418127954607680151057209, −4.97596443820805829007042907843, −4.80374278906498192403494974829, −4.57995529020975816514391885431, −4.08175854079333487749314144381, −3.67315497872995440881707885943, −3.26432624673866600905196991037, −2.67751703285982928686704922668, −2.56481097968481408201878974001, −2.01799075059631958924524305554, −1.14446060622656722647525096372, 0, 0,
1.14446060622656722647525096372, 2.01799075059631958924524305554, 2.56481097968481408201878974001, 2.67751703285982928686704922668, 3.26432624673866600905196991037, 3.67315497872995440881707885943, 4.08175854079333487749314144381, 4.57995529020975816514391885431, 4.80374278906498192403494974829, 4.97596443820805829007042907843, 5.66043418127954607680151057209, 5.84170730043084026177542663517, 6.28748234578207812488485428215, 6.76978093544789675049433869471, 7.06815547519602159872205392482, 7.33414622823635359660799475023, 7.51115303589102797161468777280, 8.133914199365458465948147901354