Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 4 x + 88 x^{2} + 172 x^{3} + 1849 x^{4}$ |
Frobenius angles: | $\pm0.514222296469$, $\pm0.583831798889$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1761536.1 |
Galois group: | $D_{4}$ |
Jacobians: | $20$ |
Isomorphism classes: | 20 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2114$ | $3724868$ | $6283706450$ | $11669519761424$ | $21615723044959554$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $48$ | $2010$ | $79032$ | $3413334$ | $147037288$ | $6321514890$ | $271817286096$ | $11688197364894$ | $502592660739696$ | $21611482321541050$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):
- $y^2=23 x^6+30 x^5+31 x^4+14 x^3+31 x^2+39 x+24$
- $y^2=x^6+7 x^5+30 x^4+13 x^3+23 x^2+35 x+7$
- $y^2=36 x^6+20 x^5+17 x^4+24 x^3+17 x^2+21 x+6$
- $y^2=41 x^6+32 x^5+22 x^4+19 x^3+37 x^2+16 x+32$
- $y^2=14 x^6+15 x^5+17 x^4+4 x^3+25 x^2+38 x+22$
- $y^2=6 x^6+31 x^5+19 x^4+15 x^3+21 x^2+9 x+7$
- $y^2=10 x^6+17 x^5+35 x^4+29 x^3+42 x^2+41 x+31$
- $y^2=22 x^6+35 x^5+4 x^4+5 x^3+22 x^2+6 x+25$
- $y^2=26 x^5+40 x^4+9 x^3+36 x^2+11 x+14$
- $y^2=28 x^6+36 x^5+19 x^4+10 x^3+40 x^2+22 x+18$
- $y^2=11 x^6+11 x^5+30 x^4+41 x^3+19 x^2+8 x+41$
- $y^2=36 x^6+2 x^5+8 x^4+29 x^3+37 x+3$
- $y^2=6 x^6+x^5+6 x^4+22 x^3+11 x^2+11 x+24$
- $y^2=13 x^6+6 x^5+4 x^4+34 x^3+12 x^2+10 x+5$
- $y^2=41 x^6+39 x^5+28 x^4+22 x^3+13 x^2+10 x+15$
- $y^2=5 x^6+40 x^5+x^4+2 x^3+7 x^2+24 x+12$
- $y^2=2 x^6+18 x^5+3 x^4+21 x^3+27 x^2+37 x+28$
- $y^2=22 x^6+29 x^5+12 x^4+15 x^3+23 x^2+32 x+27$
- $y^2=9 x^6+36 x^5+5 x^4+29 x^3+29 x^2+13 x+8$
- $y^2=32 x^6+17 x^5+18 x^4+21 x^3+3 x^2+27 x+12$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$The endomorphism algebra of this simple isogeny class is 4.0.1761536.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.43.ae_dk | $2$ | (not in LMFDB) |