Properties

Label 2-4235-1.1-c1-0-12
Degree $2$
Conductor $4235$
Sign $1$
Analytic cond. $33.8166$
Root an. cond. $5.81520$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·4-s − 5-s − 7-s − 2·9-s − 2·12-s − 5·13-s − 15-s + 4·16-s − 3·17-s − 2·19-s + 2·20-s − 21-s − 6·23-s + 25-s − 5·27-s + 2·28-s − 3·29-s − 4·31-s + 35-s + 4·36-s + 2·37-s − 5·39-s + 12·41-s + 10·43-s + 2·45-s + 9·47-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s − 0.447·5-s − 0.377·7-s − 2/3·9-s − 0.577·12-s − 1.38·13-s − 0.258·15-s + 16-s − 0.727·17-s − 0.458·19-s + 0.447·20-s − 0.218·21-s − 1.25·23-s + 1/5·25-s − 0.962·27-s + 0.377·28-s − 0.557·29-s − 0.718·31-s + 0.169·35-s + 2/3·36-s + 0.328·37-s − 0.800·39-s + 1.87·41-s + 1.52·43-s + 0.298·45-s + 1.31·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4235 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4235 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4235\)    =    \(5 \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(33.8166\)
Root analytic conductor: \(5.81520\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4235,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6648458645\)
\(L(\frac12)\) \(\approx\) \(0.6648458645\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad5 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 \)
good2 \( 1 + p T^{2} \) 1.2.a
3 \( 1 - T + p T^{2} \) 1.3.ab
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.504764710422860488143194115790, −7.67950449335459092353880992506, −7.28726628142540726038141332638, −5.98086532326102961421297628547, −5.49671842174989089979243313601, −4.26526382517520030491171627830, −4.09257990991624762122042789987, −2.90308901018164947604047652054, −2.20945739428189555232801439935, −0.42426621729141121803731134362, 0.42426621729141121803731134362, 2.20945739428189555232801439935, 2.90308901018164947604047652054, 4.09257990991624762122042789987, 4.26526382517520030491171627830, 5.49671842174989089979243313601, 5.98086532326102961421297628547, 7.28726628142540726038141332638, 7.67950449335459092353880992506, 8.504764710422860488143194115790

Graph of the $Z$-function along the critical line