| L(s) = 1 | − 2·5-s + 4·7-s + 4·11-s + 2·13-s + 4·17-s + 4·19-s + 8·23-s + 3·25-s − 8·29-s − 4·31-s − 8·35-s + 12·41-s − 8·43-s − 4·47-s − 2·49-s − 12·53-s − 8·55-s − 4·59-s − 8·61-s − 4·65-s + 20·67-s − 12·71-s + 16·77-s − 9·81-s − 4·83-s − 8·85-s + 12·89-s + ⋯ |
| L(s) = 1 | − 0.894·5-s + 1.51·7-s + 1.20·11-s + 0.554·13-s + 0.970·17-s + 0.917·19-s + 1.66·23-s + 3/5·25-s − 1.48·29-s − 0.718·31-s − 1.35·35-s + 1.87·41-s − 1.21·43-s − 0.583·47-s − 2/7·49-s − 1.64·53-s − 1.07·55-s − 0.520·59-s − 1.02·61-s − 0.496·65-s + 2.44·67-s − 1.42·71-s + 1.82·77-s − 81-s − 0.439·83-s − 0.867·85-s + 1.27·89-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 17305600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17305600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(3.720013264\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.720013264\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.536979992933136069643445024711, −8.241931850839087000690124940171, −7.63125649651268229857789424226, −7.62451251039985565438992329163, −7.39649727999998275308944915334, −6.85735996163673941950735150808, −6.33232698311946482134425396355, −6.14817539055921566747033333234, −5.38410548459870093398866412604, −5.32613120825045798844904726491, −4.82130743277414439781138857869, −4.44823954608155168108917027369, −4.11252064825140706616281753788, −3.50303263945378926451702693452, −3.26058460697073078745467769467, −2.99333662394091491053422040047, −1.91509117466914696146193422396, −1.65836754373225856382646726732, −1.17875630867796752775651763657, −0.62069008302814059037132102165,
0.62069008302814059037132102165, 1.17875630867796752775651763657, 1.65836754373225856382646726732, 1.91509117466914696146193422396, 2.99333662394091491053422040047, 3.26058460697073078745467769467, 3.50303263945378926451702693452, 4.11252064825140706616281753788, 4.44823954608155168108917027369, 4.82130743277414439781138857869, 5.32613120825045798844904726491, 5.38410548459870093398866412604, 6.14817539055921566747033333234, 6.33232698311946482134425396355, 6.85735996163673941950735150808, 7.39649727999998275308944915334, 7.62451251039985565438992329163, 7.63125649651268229857789424226, 8.241931850839087000690124940171, 8.536979992933136069643445024711