Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 20 x + 210 x^{2} - 1340 x^{3} + 4489 x^{4}$ |
| Frobenius angles: | $\pm0.136004569043$, $\pm0.399136977790$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.1603584.2 |
| Galois group: | $D_{4}$ |
| Jacobians: | $140$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3340$ | $20240400$ | $90633147820$ | $406038616320000$ | $1822791765092034700$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $48$ | $4510$ | $301344$ | $20149678$ | $1350091008$ | $90458690830$ | $6060720400944$ | $406067749438558$ | $27206534553532368$ | $1822837803001863550$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 140 curves (of which all are hyperelliptic):
- $y^2=28 x^6+16 x^5+48 x^4+39 x^3+15 x^2+47 x+51$
- $y^2=30 x^6+40 x^5+49 x^4+x^3+38 x^2+39 x+6$
- $y^2=5 x^6+19 x^5+55 x^4+60 x^3+24 x^2+11 x+33$
- $y^2=38 x^6+43 x^5+9 x^4+61 x^3+11 x^2+64 x+19$
- $y^2=56 x^6+30 x^5+65 x^4+39 x^3+31 x^2+39 x+28$
- $y^2=51 x^6+50 x^5+30 x^4+32 x^3+49 x^2+33 x+17$
- $y^2=5 x^6+37 x^5+56 x^4+12 x^3+12 x^2+54 x+40$
- $y^2=60 x^6+25 x^5+65 x^4+53 x^3+39 x^2+16 x+5$
- $y^2=51 x^6+51 x^5+23 x^4+41 x^3+66 x^2+33 x+31$
- $y^2=57 x^6+21 x^5+3 x^3+19 x^2+37 x+31$
- $y^2=57 x^6+14 x^5+28 x^4+64 x^3+30 x^2+3 x+33$
- $y^2=49 x^6+28 x^5+46 x^4+22 x^3+62 x^2+47 x+60$
- $y^2=26 x^6+45 x^5+39 x^4+5 x^3+31 x^2+18 x+45$
- $y^2=34 x^6+9 x^5+7 x^4+21 x^3+15 x^2+60 x+3$
- $y^2=9 x^6+8 x^5+62 x^4+13 x^3+36 x^2+36 x+30$
- $y^2=30 x^6+x^5+36 x^4+7 x^3+28 x^2+8 x+19$
- $y^2=11 x^6+28 x^5+14 x^4+18 x^3+32 x^2+28 x+48$
- $y^2=28 x^6+10 x^5+7 x^4+66 x^3+31 x^2+36 x+41$
- $y^2=9 x^6+65 x^5+8 x^4+40 x^3+49 x^2+32 x+42$
- $y^2=37 x^6+21 x^5+5 x^4+46 x^3+29 x^2+29 x+50$
- and 120 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$| The endomorphism algebra of this simple isogeny class is 4.0.1603584.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.67.u_ic | $2$ | (not in LMFDB) |