Properties

Label 2.67.au_ic
Base field $\F_{67}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $2$
L-polynomial:  $1 - 20 x + 210 x^{2} - 1340 x^{3} + 4489 x^{4}$
Frobenius angles:  $\pm0.136004569043$, $\pm0.399136977790$
Angle rank:  $2$ (numerical)
Number field:  4.0.1603584.2
Galois group:  $D_{4}$
Jacobians:  $140$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3340$ $20240400$ $90633147820$ $406038616320000$ $1822791765092034700$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $48$ $4510$ $301344$ $20149678$ $1350091008$ $90458690830$ $6060720400944$ $406067749438558$ $27206534553532368$ $1822837803001863550$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 140 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67}$.

Endomorphism algebra over $\F_{67}$
The endomorphism algebra of this simple isogeny class is 4.0.1603584.2.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.u_ic$2$(not in LMFDB)