Properties

Label 2.71.m_gq
Base field $\F_{71}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{71}$
Dimension:  $2$
L-polynomial:  $1 + 12 x + 172 x^{2} + 852 x^{3} + 5041 x^{4}$
Frobenius angles:  $\pm0.567569115079$, $\pm0.667175952307$
Angle rank:  $2$ (numerical)
Number field:  4.0.1329408.2
Galois group:  $D_{4}$
Jacobians:  $112$
Cyclic group of points:    yes

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $6078$ $26439300$ $127418954958$ $645713804250000$ $3255452942149625358$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $84$ $5242$ $356004$ $25410118$ $1804345404$ $128099777722$ $9095117222604$ $645753562549438$ $45848500694024724$ $3255243550971786202$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{71}$.

Endomorphism algebra over $\F_{71}$
The endomorphism algebra of this simple isogeny class is 4.0.1329408.2.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.71.am_gq$2$(not in LMFDB)