Invariants
| Base field: | $\F_{71}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 12 x + 172 x^{2} + 852 x^{3} + 5041 x^{4}$ |
| Frobenius angles: | $\pm0.567569115079$, $\pm0.667175952307$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.1329408.2 |
| Galois group: | $D_{4}$ |
| Jacobians: | $112$ |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6078$ | $26439300$ | $127418954958$ | $645713804250000$ | $3255452942149625358$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $84$ | $5242$ | $356004$ | $25410118$ | $1804345404$ | $128099777722$ | $9095117222604$ | $645753562549438$ | $45848500694024724$ | $3255243550971786202$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):
- $y^2=48 x^6+41 x^5+44 x^4+69 x^3+20 x^2+23 x+13$
- $y^2=30 x^6+62 x^5+60 x^4+40 x^3+12 x^2+63 x+23$
- $y^2=40 x^6+19 x^5+4 x^4+58 x^3+28 x^2+61 x+60$
- $y^2=x^6+22 x^5+26 x^4+30 x^3+7 x^2+10 x+8$
- $y^2=16 x^6+16 x^5+36 x^4+9 x^3+25 x^2+26 x+1$
- $y^2=48 x^6+11 x^5+38 x^4+51 x^3+64 x^2+66 x+32$
- $y^2=36 x^6+66 x^5+52 x^4+55 x^3+18 x^2+67 x+29$
- $y^2=44 x^6+37 x^5+40 x^4+12 x^3+18 x^2+25 x+43$
- $y^2=10 x^6+28 x^5+35 x^4+10 x^3+54 x^2+69 x+50$
- $y^2=9 x^6+45 x^5+34 x^4+38 x^3+68 x^2+25 x+49$
- $y^2=56 x^6+27 x^5+52 x^4+19 x^3+32 x^2+28 x+51$
- $y^2=16 x^6+39 x^5+64 x^4+41 x^3+69 x^2+36 x+7$
- $y^2=64 x^6+21 x^5+57 x^4+45 x^3+21 x^2+41 x+50$
- $y^2=49 x^6+9 x^5+41 x^4+24 x^3+47 x^2+66 x+68$
- $y^2=34 x^6+56 x^5+34 x^4+38 x^3+44 x^2+50 x+13$
- $y^2=24 x^6+13 x^5+47 x^4+38 x^3+40 x^2+29 x+69$
- $y^2=3 x^6+37 x^5+39 x^4+9 x^3+27 x^2+36 x+45$
- $y^2=46 x^6+64 x^5+67 x^4+55 x^3+24 x^2+67 x+25$
- $y^2=27 x^6+31 x^5+48 x^4+63 x^3+55 x^2+23 x+69$
- $y^2=31 x^6+21 x^5+45 x^4+12 x^3+56 x^2+54 x+30$
- and 92 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71}$.
Endomorphism algebra over $\F_{71}$| The endomorphism algebra of this simple isogeny class is 4.0.1329408.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.71.am_gq | $2$ | (not in LMFDB) |