Invariants
| Base field: | $\F_{41}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 12 x + 94 x^{2} - 492 x^{3} + 1681 x^{4}$ |
| Frobenius angles: | $\pm0.175955851526$, $\pm0.472599398123$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.1059840.4 |
| Galois group: | $D_{4}$ |
| Jacobians: | $112$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1272$ | $2900160$ | $4762654200$ | $7981657943040$ | $13423937024328312$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $30$ | $1726$ | $69102$ | $2824606$ | $115867230$ | $4750359838$ | $194755433070$ | $7984922482366$ | $327381899684382$ | $13422659292496126$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):
- $y^2=23 x^6+23 x^5+20 x^4+16 x^3+28 x^2+37 x+5$
- $y^2=7 x^6+9 x^5+12 x^4+4 x^3+33 x^2+21 x+33$
- $y^2=22 x^6+38 x^5+18 x^4+24 x^3+3 x^2+30 x+22$
- $y^2=22 x^6+30 x^5+34 x^4+10 x^3+19 x^2+40 x+21$
- $y^2=14 x^6+35 x^5+40 x^4+18 x^3+25 x^2+22$
- $y^2=35 x^6+5 x^5+40 x^4+37 x^3+38 x^2+25 x+7$
- $y^2=35 x^6+26 x^5+27 x^4+2 x^3+16 x^2+17 x+38$
- $y^2=34 x^6+34 x^5+19 x^4+18 x^3+22 x^2+29 x+34$
- $y^2=35 x^6+13 x^5+39 x^4+34 x^3+3 x^2+23 x+17$
- $y^2=14 x^5+32 x^3+x^2+33 x+2$
- $y^2=3 x^6+32 x^5+12 x^4+33 x^3+30 x^2+13 x+10$
- $y^2=3 x^6+22 x^5+29 x^4+38 x^3+27 x^2+27 x+25$
- $y^2=13 x^6+6 x^5+17 x^4+13 x^3+19 x^2+30 x+6$
- $y^2=37 x^6+x^5+10 x^4+35 x^3+18 x^2+22 x$
- $y^2=6 x^6+40 x^5+27 x^4+4 x^3+30 x^2+39 x+39$
- $y^2=19 x^6+14 x^5+25 x^4+7 x^3+34 x^2+9 x+34$
- $y^2=38 x^6+23 x^5+27 x^4+31 x^3+x^2+11 x+27$
- $y^2=19 x^6+13 x^5+19 x^4+40 x^3+8 x^2+8 x+22$
- $y^2=38 x^6+14 x^5+5 x^4+6 x^3+14 x^2+9 x+27$
- $y^2=8 x^6+x^5+39 x^4+32 x^3+21 x^2+22 x+7$
- and 92 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$| The endomorphism algebra of this simple isogeny class is 4.0.1059840.4. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.41.m_dq | $2$ | (not in LMFDB) |