Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 8 x + 42 x^{2} + 488 x^{3} + 3721 x^{4}$ |
| Frobenius angles: | $\pm0.378954553716$, $\pm0.844699717429$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.1624320.2 |
| Galois group: | $D_{4}$ |
| Jacobians: | $240$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4260$ | $13921680$ | $51740635140$ | $191740514304000$ | $713259003459886500$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $70$ | $3742$ | $227950$ | $13848238$ | $844496950$ | $51520521742$ | $3142741058590$ | $191707360595038$ | $11694146084471590$ | $713342910049663102$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 240 curves (of which all are hyperelliptic):
- $y^2=5 x^6+35 x^5+18 x^4+53 x^3+16 x^2+29 x+60$
- $y^2=46 x^6+53 x^5+36 x^4+31 x^3+30 x^2+23 x+25$
- $y^2=14 x^6+16 x^5+40 x^4+28 x^3+19 x^2+18 x+32$
- $y^2=58 x^6+15 x^5+47 x^4+31 x^3+2 x^2+26 x+59$
- $y^2=10 x^6+32 x^5+2 x^4+31 x^3+x^2+26 x+22$
- $y^2=37 x^6+58 x^5+54 x^4+57 x^3+41 x^2+4 x+23$
- $y^2=6 x^6+58 x^5+4 x^4+40 x^3+60 x^2+59 x+45$
- $y^2=59 x^6+58 x^5+12 x^4+31 x^3+26 x^2+17 x+28$
- $y^2=60 x^6+5 x^5+44 x^4+14 x^3+47 x^2+9 x+5$
- $y^2=34 x^6+41 x^5+6 x^4+39 x^3+55 x^2+24 x+30$
- $y^2=5 x^6+52 x^5+46 x^4+30 x^3+22 x^2+23 x+8$
- $y^2=3 x^6+21 x^5+10 x^4+46 x^3+19 x^2+9 x+25$
- $y^2=30 x^6+29 x^5+2 x^4+42 x^3+29 x^2+38 x+48$
- $y^2=28 x^6+57 x^5+22 x^4+x^3+2 x^2+28 x+45$
- $y^2=19 x^6+27 x^5+44 x^3+36 x^2+33 x+29$
- $y^2=51 x^6+45 x^5+22 x^4+15 x^3+29 x^2+48 x+2$
- $y^2=16 x^6+58 x^5+32 x^4+27 x^3+38 x^2+28 x+31$
- $y^2=7 x^6+16 x^5+23 x^4+53 x^3+40 x^2+28 x+4$
- $y^2=48 x^6+28 x^5+49 x^4+42 x^3+56 x^2+24 x+20$
- $y^2=49 x^6+46 x^5+40 x^4+31 x^3+31 x^2+42 x+58$
- and 220 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$| The endomorphism algebra of this simple isogeny class is 4.0.1624320.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.61.ai_bq | $2$ | (not in LMFDB) |