Properties

Label 2-368-1.1-c1-0-8
Degree $2$
Conductor $368$
Sign $-1$
Analytic cond. $2.93849$
Root an. cond. $1.71420$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·7-s − 2·9-s − 13-s − 6·17-s − 2·19-s + 2·21-s + 23-s − 5·25-s + 5·27-s − 3·29-s − 5·31-s + 8·37-s + 39-s + 3·41-s − 8·43-s − 9·47-s − 3·49-s + 6·51-s + 6·53-s + 2·57-s + 12·59-s + 14·61-s + 4·63-s − 8·67-s − 69-s + 15·71-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.755·7-s − 2/3·9-s − 0.277·13-s − 1.45·17-s − 0.458·19-s + 0.436·21-s + 0.208·23-s − 25-s + 0.962·27-s − 0.557·29-s − 0.898·31-s + 1.31·37-s + 0.160·39-s + 0.468·41-s − 1.21·43-s − 1.31·47-s − 3/7·49-s + 0.840·51-s + 0.824·53-s + 0.264·57-s + 1.56·59-s + 1.79·61-s + 0.503·63-s − 0.977·67-s − 0.120·69-s + 1.78·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(368\)    =    \(2^{4} \cdot 23\)
Sign: $-1$
Analytic conductor: \(2.93849\)
Root analytic conductor: \(1.71420\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 368,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
23 \( 1 - T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 2 T + p T^{2} \) 1.19.c
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.16792878112545616987260265830, −10.05292017083867367601940145437, −9.179275350265405931647106340341, −8.212075228103815323528954683241, −6.89620203002587049775804567261, −6.16371681572141052386909884198, −5.13331484784391238836917003859, −3.83402862781800864661702948677, −2.39273654521761793285798715610, 0, 2.39273654521761793285798715610, 3.83402862781800864661702948677, 5.13331484784391238836917003859, 6.16371681572141052386909884198, 6.89620203002587049775804567261, 8.212075228103815323528954683241, 9.179275350265405931647106340341, 10.05292017083867367601940145437, 11.16792878112545616987260265830

Graph of the $Z$-function along the critical line