L(s) = 1 | − 2·2-s − 4-s + 10·7-s + 8·8-s + 2·9-s − 4·13-s − 20·14-s − 7·16-s − 4·18-s + 8·26-s − 10·28-s + 2·29-s − 14·32-s − 2·36-s − 8·37-s + 14·47-s + 61·49-s + 4·52-s + 80·56-s − 4·58-s + 2·61-s + 20·63-s + 35·64-s − 6·67-s + 16·72-s + 8·73-s + 16·74-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 1/2·4-s + 3.77·7-s + 2.82·8-s + 2/3·9-s − 1.10·13-s − 5.34·14-s − 7/4·16-s − 0.942·18-s + 1.56·26-s − 1.88·28-s + 0.371·29-s − 2.47·32-s − 1/3·36-s − 1.31·37-s + 2.04·47-s + 61/7·49-s + 0.554·52-s + 10.6·56-s − 0.525·58-s + 0.256·61-s + 2.51·63-s + 35/8·64-s − 0.733·67-s + 1.88·72-s + 0.936·73-s + 1.85·74-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 105625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9128531535\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9128531535\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.46734096261164614453853057994, −11.38502158068163916495467263841, −10.63364356860836270969075467070, −10.42012512599753505814830928101, −10.09834917257210647979140745822, −9.391692171468682841177486098011, −8.803311490432469805165097172784, −8.498160332307600170901938960037, −8.350847253418280992659148680446, −7.55906263091254102720028666402, −7.44142842120530832435795620294, −7.20677905564976580363652819523, −5.59811001088471801996347295521, −5.24727016759936878409990803024, −4.60124737174930514912143557880, −4.57814842204522320964446182267, −3.98537530070758719262941598905, −2.20372613703075722135017250404, −1.64390557452230311934047307962, −1.03497245506912373904505206560,
1.03497245506912373904505206560, 1.64390557452230311934047307962, 2.20372613703075722135017250404, 3.98537530070758719262941598905, 4.57814842204522320964446182267, 4.60124737174930514912143557880, 5.24727016759936878409990803024, 5.59811001088471801996347295521, 7.20677905564976580363652819523, 7.44142842120530832435795620294, 7.55906263091254102720028666402, 8.350847253418280992659148680446, 8.498160332307600170901938960037, 8.803311490432469805165097172784, 9.391692171468682841177486098011, 10.09834917257210647979140745822, 10.42012512599753505814830928101, 10.63364356860836270969075467070, 11.38502158068163916495467263841, 11.46734096261164614453853057994