Properties

Label 2-3168-1.1-c1-0-49
Degree $2$
Conductor $3168$
Sign $-1$
Analytic cond. $25.2966$
Root an. cond. $5.02957$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 11-s − 2·17-s − 6·19-s − 6·23-s − 25-s − 2·29-s − 2·37-s + 2·41-s − 6·43-s − 6·47-s − 7·49-s − 2·53-s − 2·55-s + 8·61-s − 12·67-s + 6·71-s + 6·73-s − 12·79-s + 12·83-s − 4·85-s + 8·89-s − 12·95-s + 6·97-s + 2·101-s + 12·107-s − 4·113-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.301·11-s − 0.485·17-s − 1.37·19-s − 1.25·23-s − 1/5·25-s − 0.371·29-s − 0.328·37-s + 0.312·41-s − 0.914·43-s − 0.875·47-s − 49-s − 0.274·53-s − 0.269·55-s + 1.02·61-s − 1.46·67-s + 0.712·71-s + 0.702·73-s − 1.35·79-s + 1.31·83-s − 0.433·85-s + 0.847·89-s − 1.23·95-s + 0.609·97-s + 0.199·101-s + 1.16·107-s − 0.376·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3168\)    =    \(2^{5} \cdot 3^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(25.2966\)
Root analytic conductor: \(5.02957\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3168,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.345191708643617956158106330184, −7.64169774921111749547569285208, −6.54293323680220475986381969205, −6.17342328550991466807414813888, −5.28382917315601766898618434233, −4.46240446556071889689804551118, −3.53706427119729610002870049485, −2.33177257604628276146265779832, −1.74810519198558425601842381645, 0, 1.74810519198558425601842381645, 2.33177257604628276146265779832, 3.53706427119729610002870049485, 4.46240446556071889689804551118, 5.28382917315601766898618434233, 6.17342328550991466807414813888, 6.54293323680220475986381969205, 7.64169774921111749547569285208, 8.345191708643617956158106330184

Graph of the $Z$-function along the critical line