Properties

Label 2-2667-1.1-c1-0-97
Degree $2$
Conductor $2667$
Sign $-1$
Analytic cond. $21.2961$
Root an. cond. $4.61477$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s − 4-s − 6-s + 7-s + 3·8-s + 9-s − 12-s + 2·13-s − 14-s − 16-s − 2·17-s − 18-s − 6·19-s + 21-s − 8·23-s + 3·24-s − 5·25-s − 2·26-s + 27-s − 28-s + 6·29-s − 2·31-s − 5·32-s + 2·34-s − 36-s − 6·37-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s − 1/2·4-s − 0.408·6-s + 0.377·7-s + 1.06·8-s + 1/3·9-s − 0.288·12-s + 0.554·13-s − 0.267·14-s − 1/4·16-s − 0.485·17-s − 0.235·18-s − 1.37·19-s + 0.218·21-s − 1.66·23-s + 0.612·24-s − 25-s − 0.392·26-s + 0.192·27-s − 0.188·28-s + 1.11·29-s − 0.359·31-s − 0.883·32-s + 0.342·34-s − 1/6·36-s − 0.986·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2667\)    =    \(3 \cdot 7 \cdot 127\)
Sign: $-1$
Analytic conductor: \(21.2961\)
Root analytic conductor: \(4.61477\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2667,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
7 \( 1 - T \)
127 \( 1 + T \)
good2 \( 1 + T + p T^{2} \) 1.2.b
5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.443906215241180126857704990058, −8.117248107156138680135515694087, −7.18478634495540751678064887408, −6.30167790101972141651105237708, −5.30496434478245662145579871450, −4.22163802006655008928110832197, −3.87576444481729557861693659494, −2.35115524823199716633752036871, −1.52276924969993744607094913618, 0, 1.52276924969993744607094913618, 2.35115524823199716633752036871, 3.87576444481729557861693659494, 4.22163802006655008928110832197, 5.30496434478245662145579871450, 6.30167790101972141651105237708, 7.18478634495540751678064887408, 8.117248107156138680135515694087, 8.443906215241180126857704990058

Graph of the $Z$-function along the critical line