Properties

Label 2-2450-1.1-c1-0-31
Degree $2$
Conductor $2450$
Sign $1$
Analytic cond. $19.5633$
Root an. cond. $4.42304$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3·3-s + 4-s − 3·6-s − 8-s + 6·9-s + 3·12-s + 2·13-s + 16-s + 2·17-s − 6·18-s − 2·19-s + 23-s − 3·24-s − 2·26-s + 9·27-s − 29-s + 10·31-s − 32-s − 2·34-s + 6·36-s + 8·37-s + 2·38-s + 6·39-s − 3·41-s − 5·43-s − 46-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.73·3-s + 1/2·4-s − 1.22·6-s − 0.353·8-s + 2·9-s + 0.866·12-s + 0.554·13-s + 1/4·16-s + 0.485·17-s − 1.41·18-s − 0.458·19-s + 0.208·23-s − 0.612·24-s − 0.392·26-s + 1.73·27-s − 0.185·29-s + 1.79·31-s − 0.176·32-s − 0.342·34-s + 36-s + 1.31·37-s + 0.324·38-s + 0.960·39-s − 0.468·41-s − 0.762·43-s − 0.147·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2450\)    =    \(2 \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(19.5633\)
Root analytic conductor: \(4.42304\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2450,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.671229545\)
\(L(\frac12)\) \(\approx\) \(2.671229545\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
good3 \( 1 - p T + p T^{2} \) 1.3.ad
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 + 9 T + p T^{2} \) 1.61.j
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 + 7 T + p T^{2} \) 1.89.h
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.743022593234522985721931678222, −8.300068839701508729561745308721, −7.78467201974518553154523249024, −6.90743881227953346358335962173, −6.14626622533803432582714969204, −4.77473381222051867477882648359, −3.77809987257108474495996208239, −3.01284848673728285364248175619, −2.20286905296666390503267896420, −1.15563015367105212658357718620, 1.15563015367105212658357718620, 2.20286905296666390503267896420, 3.01284848673728285364248175619, 3.77809987257108474495996208239, 4.77473381222051867477882648359, 6.14626622533803432582714969204, 6.90743881227953346358335962173, 7.78467201974518553154523249024, 8.300068839701508729561745308721, 8.743022593234522985721931678222

Graph of the $Z$-function along the critical line