L(s) = 1 | − 4·3-s − 4-s + 6·9-s + 4·12-s + 16-s + 6·17-s + 12·23-s + 25-s + 4·27-s + 6·29-s − 6·36-s + 20·43-s − 4·48-s − 49-s − 24·51-s − 18·53-s − 14·61-s − 64-s − 6·68-s − 48·69-s − 4·75-s + 28·79-s − 37·81-s − 24·87-s − 12·92-s − 100-s + 6·101-s + ⋯ |
L(s) = 1 | − 2.30·3-s − 1/2·4-s + 2·9-s + 1.15·12-s + 1/4·16-s + 1.45·17-s + 2.50·23-s + 1/5·25-s + 0.769·27-s + 1.11·29-s − 36-s + 3.04·43-s − 0.577·48-s − 1/7·49-s − 3.36·51-s − 2.47·53-s − 1.79·61-s − 1/8·64-s − 0.727·68-s − 5.77·69-s − 0.461·75-s + 3.15·79-s − 4.11·81-s − 2.57·87-s − 1.25·92-s − 0.0999·100-s + 0.597·101-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5597956 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5597956 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8743580536\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8743580536\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.176456279280782499421801297033, −9.021815247235888260409217854704, −8.386287621983200504108223070574, −7.87155755998979876522036464228, −7.61381376898637989668792239146, −7.17024844502121251948035204392, −6.63263329455942970948921197321, −6.25243398642438979155868653800, −6.13206886124576596910222488987, −5.61729243399358276735797768547, −5.15352417927156515130287855948, −4.92766449933949695691335550189, −4.76421043167002611112525172731, −4.13325425901026073184629392674, −3.44727137957389734558285298878, −2.96661305666930403912590126360, −2.61360966318602513556049747684, −1.35758904984638082493168359807, −0.988347163041432410860143448174, −0.51367760153837726363666324369,
0.51367760153837726363666324369, 0.988347163041432410860143448174, 1.35758904984638082493168359807, 2.61360966318602513556049747684, 2.96661305666930403912590126360, 3.44727137957389734558285298878, 4.13325425901026073184629392674, 4.76421043167002611112525172731, 4.92766449933949695691335550189, 5.15352417927156515130287855948, 5.61729243399358276735797768547, 6.13206886124576596910222488987, 6.25243398642438979155868653800, 6.63263329455942970948921197321, 7.17024844502121251948035204392, 7.61381376898637989668792239146, 7.87155755998979876522036464228, 8.386287621983200504108223070574, 9.021815247235888260409217854704, 9.176456279280782499421801297033