L(s) = 1 | + 2·2-s − 2·3-s + 3·4-s − 2·5-s − 4·6-s − 2·7-s + 4·8-s − 4·10-s + 2·11-s − 6·12-s − 4·14-s + 4·15-s + 5·16-s − 8·17-s − 4·19-s − 6·20-s + 4·21-s + 4·22-s + 6·23-s − 8·24-s − 7·25-s + 2·27-s − 6·28-s − 6·29-s + 8·30-s + 14·31-s + 6·32-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 1.15·3-s + 3/2·4-s − 0.894·5-s − 1.63·6-s − 0.755·7-s + 1.41·8-s − 1.26·10-s + 0.603·11-s − 1.73·12-s − 1.06·14-s + 1.03·15-s + 5/4·16-s − 1.94·17-s − 0.917·19-s − 1.34·20-s + 0.872·21-s + 0.852·22-s + 1.25·23-s − 1.63·24-s − 7/5·25-s + 0.384·27-s − 1.13·28-s − 1.11·29-s + 1.46·30-s + 2.51·31-s + 1.06·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5597956 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5597956 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.547594992164205336936871408753, −8.515555040556149667672946354483, −7.84023186710153715636150745632, −7.48368614926966973344361268034, −6.94889281087645164076829857500, −6.60783682001252835112777770542, −6.30453265784210065031363530924, −6.25021980417363742317247007268, −5.51018590872417861098917411555, −5.36956929014345924273026435746, −4.52245195760403103912932975837, −4.46011350816031448948214450035, −4.17882185693419083832418332538, −3.59619903384691236174980648320, −2.91204849639759265843545105556, −2.85452964335640877013887870029, −1.93566937048094380354569967793, −1.39103844041953203269856385468, 0, 0,
1.39103844041953203269856385468, 1.93566937048094380354569967793, 2.85452964335640877013887870029, 2.91204849639759265843545105556, 3.59619903384691236174980648320, 4.17882185693419083832418332538, 4.46011350816031448948214450035, 4.52245195760403103912932975837, 5.36956929014345924273026435746, 5.51018590872417861098917411555, 6.25021980417363742317247007268, 6.30453265784210065031363530924, 6.60783682001252835112777770542, 6.94889281087645164076829857500, 7.48368614926966973344361268034, 7.84023186710153715636150745632, 8.515555040556149667672946354483, 8.547594992164205336936871408753