Invariants
Base field: | $\F_{41}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 2 x + 71 x^{2} - 82 x^{3} + 1681 x^{4}$ |
Frobenius angles: | $\pm0.386661326622$, $\pm0.561631648131$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.3276432.1 |
Galois group: | $D_{4}$ |
Jacobians: | $36$ |
Isomorphism classes: | 36 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1669$ | $3065953$ | $4761964096$ | $7976754305113$ | $13422274294135069$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $40$ | $1820$ | $69094$ | $2822868$ | $115852880$ | $4750085198$ | $194753945216$ | $7984930516324$ | $327381972326326$ | $13422659015688140$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):
- $y^2=18 x^6+16 x^5+33 x^4+27 x^3+14 x^2+34 x+14$
- $y^2=33 x^6+23 x^5+28 x^4+28 x^3+27 x^2+29 x+8$
- $y^2=15 x^6+31 x^5+17 x^4+4 x^3+19 x^2+21 x+30$
- $y^2=22 x^6+29 x^5+2 x^4+26 x^3+16 x^2+19 x+5$
- $y^2=40 x^6+23 x^5+23 x^3+33 x^2+13 x+37$
- $y^2=34 x^6+20 x^5+24 x^4+39 x^3+16 x^2+25 x+29$
- $y^2=15 x^6+4 x^5+20 x^4+9 x^3+14 x^2+27 x+24$
- $y^2=17 x^6+24 x^5+29 x^4+7 x^3+8 x^2+40 x+14$
- $y^2=28 x^6+28 x^5+10 x^4+25 x^3+30 x^2+24 x+30$
- $y^2=12 x^6+x^5+21 x^4+25 x^3+21 x^2+38 x+13$
- $y^2=20 x^6+22 x^5+32 x^4+6 x^3+20 x^2+19 x+30$
- $y^2=31 x^6+25 x^5+23 x^4+25 x^3+15 x^2+10 x+24$
- $y^2=3 x^6+37 x^5+8 x^4+33 x^3+27 x^2+40 x+25$
- $y^2=2 x^6+2 x^5+36 x^4+27 x^3+34 x^2+37 x+24$
- $y^2=12 x^6+16 x^5+13 x^4+30 x^3+24 x^2+x+34$
- $y^2=5 x^6+3 x^5+9 x^4+9 x^3+9 x^2+13 x+30$
- $y^2=22 x^6+19 x^5+24 x^4+28 x^3+28 x^2+18 x+6$
- $y^2=18 x^6+11 x^5+x^4+33 x^3+4 x^2+2 x+27$
- $y^2=2 x^6+18 x^5+8 x^4+31 x^3+8 x^2+29 x+36$
- $y^2=x^6+40 x^5+19 x^4+39 x^3+18 x^2+2 x+5$
- and 16 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$The endomorphism algebra of this simple isogeny class is 4.0.3276432.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.41.c_ct | $2$ | (not in LMFDB) |