Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 18 x + 196 x^{2} + 1062 x^{3} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.656866227456$, $\pm0.746191941696$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.3187008.2 |
Galois group: | $D_{4}$ |
Jacobians: | $40$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4758$ | $12361284$ | $41859918126$ | $146947631367888$ | $511115350859437038$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $78$ | $3550$ | $203814$ | $12127030$ | $714922338$ | $42180100414$ | $2488654851306$ | $146830430349598$ | $8662995756326574$ | $511116753777336430$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 40 curves (of which all are hyperelliptic):
- $y^2=28 x^6+23 x^5+56 x^4+38 x^3+16 x^2+57 x+8$
- $y^2=5 x^6+35 x^5+7 x^4+42 x^3+53 x^2+16 x+21$
- $y^2=52 x^6+31 x^5+58 x^4+34 x^3+11 x^2+15 x+46$
- $y^2=53 x^5+57 x^4+2 x^3+23 x^2+24 x+15$
- $y^2=11 x^6+12 x^5+x^4+46 x^3+23 x^2+55 x+5$
- $y^2=x^6+17 x^5+36 x^4+35 x^3+50 x^2+37 x+42$
- $y^2=28 x^6+26 x^5+24 x^4+36 x^3+22 x^2+28 x+10$
- $y^2=33 x^6+15 x^5+17 x^4+23 x^3+3 x^2+38 x+17$
- $y^2=28 x^6+15 x^5+58 x^4+6 x^3+31 x^2+29 x+41$
- $y^2=57 x^6+43 x^5+34 x^4+x^3+47 x^2+50 x+37$
- $y^2=36 x^6+41 x^5+17 x^4+17 x^3+27 x^2+38 x+57$
- $y^2=46 x^6+40 x^5+41 x^4+7 x^3+31 x^2+2 x+21$
- $y^2=21 x^6+29 x^5+48 x^4+12 x^3+48 x^2+58 x+42$
- $y^2=17 x^6+41 x^5+12 x^4+51 x^3+47 x^2+38 x+19$
- $y^2=19 x^6+2 x^5+56 x^4+19 x^3+15 x^2+53 x+20$
- $y^2=19 x^6+48 x^5+45 x^4+26 x^3+12 x^2+31 x+16$
- $y^2=15 x^6+19 x^5+26 x^4+30 x^3+7 x^2+44 x+45$
- $y^2=41 x^6+57 x^5+25 x^4+47 x^3+52 x^2+22 x+15$
- $y^2=14 x^6+16 x^5+10 x^3+8 x^2+8 x+16$
- $y^2=53 x^6+40 x^5+47 x^4+20 x^3+25 x^2+50 x+7$
- and 20 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is 4.0.3187008.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.as_ho | $2$ | (not in LMFDB) |