Properties

Label 2.79.s_ie
Base field $\F_{79}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{79}$
Dimension:  $2$
L-polynomial:  $1 + 18 x + 212 x^{2} + 1422 x^{3} + 6241 x^{4}$
Frobenius angles:  $\pm0.568643763680$, $\pm0.794423530135$
Angle rank:  $2$ (numerical)
Number field:  4.0.4970304.1
Galois group:  $D_{4}$
Jacobians:  $72$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $7894$ $39580516$ $242423263822$ $1517204930651856$ $9468236808583574974$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $98$ $6342$ $491690$ $38952550$ $3077043638$ $243088457622$ $19203898569758$ $1517108787701374$ $119851597245250370$ $9468276073164987702$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{79}$.

Endomorphism algebra over $\F_{79}$
The endomorphism algebra of this simple isogeny class is 4.0.4970304.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.79.as_ie$2$(not in LMFDB)