Invariants
Base field: | $\F_{79}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 18 x + 212 x^{2} + 1422 x^{3} + 6241 x^{4}$ |
Frobenius angles: | $\pm0.568643763680$, $\pm0.794423530135$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.4970304.1 |
Galois group: | $D_{4}$ |
Jacobians: | $72$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7894$ | $39580516$ | $242423263822$ | $1517204930651856$ | $9468236808583574974$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $98$ | $6342$ | $491690$ | $38952550$ | $3077043638$ | $243088457622$ | $19203898569758$ | $1517108787701374$ | $119851597245250370$ | $9468276073164987702$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=72 x^6+42 x^5+40 x^4+56 x^3+12 x^2+65 x+15$
- $y^2=48 x^6+44 x^5+62 x^4+15 x^3+59 x^2+24 x+6$
- $y^2=32 x^6+3 x^4+50 x^3+74 x^2+58 x+4$
- $y^2=36 x^6+49 x^5+5 x^4+21 x^3+59 x^2+26 x+14$
- $y^2=64 x^6+13 x^5+11 x^4+52 x^3+48 x^2+71 x+48$
- $y^2=64 x^6+77 x^5+37 x^4+45 x^3+44 x^2+36 x+1$
- $y^2=56 x^6+29 x^5+52 x^4+12 x^3+72 x^2+56 x+18$
- $y^2=48 x^6+20 x^5+10 x^4+7 x^3+31 x^2+10 x+51$
- $y^2=19 x^6+46 x^5+3 x^4+32 x^3+14 x^2+20 x+69$
- $y^2=49 x^6+46 x^5+51 x^4+8 x^3+13 x^2+68 x+18$
- $y^2=76 x^6+29 x^5+29 x^4+45 x^3+46 x^2+6 x+17$
- $y^2=41 x^6+39 x^5+33 x^4+26 x^3+36 x^2+7 x+45$
- $y^2=52 x^6+60 x^5+6 x^4+59 x^3+5 x^2+37 x+40$
- $y^2=77 x^6+62 x^5+39 x^4+46 x^3+53 x^2+18 x+26$
- $y^2=54 x^6+15 x^5+49 x^4+10 x^3+34 x^2+57 x+15$
- $y^2=46 x^6+73 x^5+72 x^4+41 x^3+60 x^2+4 x+50$
- $y^2=27 x^6+22 x^5+21 x^4+47 x^3+37 x^2+76 x+55$
- $y^2=73 x^6+36 x^5+48 x^4+76 x^3+15 x^2+74 x+56$
- $y^2=78 x^6+14 x^5+9 x^4+45 x^3+19 x^2+22 x+36$
- $y^2=11 x^6+54 x^5+5 x^4+35 x^3+35 x^2+40 x+42$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$The endomorphism algebra of this simple isogeny class is 4.0.4970304.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.79.as_ie | $2$ | (not in LMFDB) |