Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 6 x + 68 x^{2} - 402 x^{3} + 4489 x^{4}$ |
Frobenius angles: | $\pm0.247670168456$, $\pm0.612377185275$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.4486464.1 |
Galois group: | $D_{4}$ |
Jacobians: | $154$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4150$ | $20608900$ | $90398707150$ | $406219967010000$ | $1823007837788728750$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $62$ | $4590$ | $300566$ | $20158678$ | $1350251042$ | $90458095470$ | $6060705247946$ | $406067675614558$ | $27206534136373022$ | $1822837801855621950$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 154 curves (of which all are hyperelliptic):
- $y^2=66 x^6+59 x^5+4 x^4+30 x^3+47 x^2+4 x+11$
- $y^2=53 x^6+41 x^5+54 x^4+x^3+48 x^2+51 x+17$
- $y^2=20 x^6+14 x^5+51 x^4+22 x^3+13 x^2+46 x+7$
- $y^2=14 x^6+34 x^5+6 x^4+x^3+10 x^2+21 x+13$
- $y^2=57 x^6+46 x^5+61 x^4+20 x^3+66 x^2+44 x+48$
- $y^2=18 x^6+17 x^5+22 x^4+52 x^3+13 x^2+33 x+17$
- $y^2=45 x^6+42 x^5+26 x^4+14 x^3+48 x^2+x+44$
- $y^2=17 x^6+39 x^5+40 x^4+46 x^3+32 x^2+41 x+9$
- $y^2=64 x^6+24 x^5+42 x^4+7 x^3+49 x^2+13 x+29$
- $y^2=2 x^6+33 x^5+22 x^4+62 x^3+64 x^2+21 x+37$
- $y^2=37 x^6+11 x^5+23 x^4+52 x^3+50 x^2+49 x+40$
- $y^2=3 x^6+54 x^5+53 x^4+29 x^3+30 x^2+x+28$
- $y^2=37 x^6+53 x^5+24 x^4+12 x^3+16 x^2+53 x+41$
- $y^2=30 x^6+28 x^5+57 x^4+44 x^3+9 x^2+53 x+39$
- $y^2=14 x^6+12 x^5+3 x^4+31 x^3+60 x^2+60 x+18$
- $y^2=37 x^6+x^5+3 x^4+x^3+31 x^2+48 x+15$
- $y^2=65 x^6+29 x^5+19 x^4+11 x^3+63 x^2+33 x+66$
- $y^2=32 x^6+4 x^5+15 x^4+38 x^3+28 x+57$
- $y^2=10 x^6+39 x^5+30 x^4+61 x^3+54 x^2+46 x+44$
- $y^2=46 x^6+60 x^5+62 x^4+56 x^3+54 x^2+34 x+45$
- and 134 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$The endomorphism algebra of this simple isogeny class is 4.0.4486464.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.67.g_cq | $2$ | (not in LMFDB) |