Properties

Label 2.67.ag_cq
Base field $\F_{67}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $2$
L-polynomial:  $1 - 6 x + 68 x^{2} - 402 x^{3} + 4489 x^{4}$
Frobenius angles:  $\pm0.247670168456$, $\pm0.612377185275$
Angle rank:  $2$ (numerical)
Number field:  4.0.4486464.1
Galois group:  $D_{4}$
Jacobians:  $154$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4150$ $20608900$ $90398707150$ $406219967010000$ $1823007837788728750$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $62$ $4590$ $300566$ $20158678$ $1350251042$ $90458095470$ $6060705247946$ $406067675614558$ $27206534136373022$ $1822837801855621950$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 154 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67}$.

Endomorphism algebra over $\F_{67}$
The endomorphism algebra of this simple isogeny class is 4.0.4486464.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.g_cq$2$(not in LMFDB)